Lemma 35.32.1. A surjective and flat morphism is an epimorphism in the category of schemes.

**Proof.**
Suppose we have $h : X' \to X$ surjective and flat and $a, b : X \to Y$ morphisms such that $a \circ h = b \circ h$. As $h$ is surjective we see that $a$ and $b$ agree on underlying topological spaces. Pick $x' \in X'$ and set $x = h(x')$ and $y = a(x) = b(x)$. Consider the local ring maps

These become equal when composed with the flat local homomorphism $h^\sharp _{x'} : \mathcal{O}_{X, x} \to \mathcal{O}_{X', x'}$. Since a flat local homomorphism is faithfully flat (Algebra, Lemma 10.38.17) we conclude that $h^\sharp _{x'}$ is injective. Hence $a^\sharp _ x = b^\sharp _ x$ which implies $a = b$ as desired. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: