94.11 Stacks in groupoids
Let S be a scheme contained in \mathit{Sch}_{fppf}. Recall that a category p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf} over (\mathit{Sch}/S)_{fppf} is said to be a stack in groupoids (see Stacks, Definition 8.5.1) if and only if
p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf} is fibred in groupoids over (\mathit{Sch}/S)_{fppf},
for all U \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf}), for all x, y\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}_ U) the presheaf \mathit{Isom}(x, y) is a sheaf on the site (\mathit{Sch}/U)_{fppf}, and
for all coverings \mathcal{U} = \{ U_ i \to U\} in (\mathit{Sch}/S)_{fppf}, all descent data (x_ i, \phi _{ij}) for \mathcal{U} are effective.
For examples see Examples of Stacks, Section 95.9 ff.
Comments (2)
Comment #4873 by Olivier de Gaay Fortman on
Comment #5156 by Johan on