Lemma 10.30.2. If $R$ is a Noetherian ring, then so is the formal power series ring $R[[x_1, \ldots , x_ n]]$.

**Proof.**
Since $R[[x_1, \ldots , x_{n + 1}]] \cong R[[x_1, \ldots , x_ n]][[x_{n + 1}]]$ it suffices to prove the statement that $R[[x]]$ is Noetherian if $R$ is Noetherian. Let $I \subset R[[x]]$ be a ideal. We have to show that $I$ is a finitely generated ideal. For each integer $d$ denote $I_ d = \{ a \in R \mid ax^ d + \text{h.o.t.} \in I\} $. Then we see that $I_0 \subset I_1 \subset \ldots $ stabilizes as $R$ is Noetherian. Choose $d_0$ such that $I_{d_0} = I_{d_0 + 1} = \ldots $. For each $d \leq d_0$ choose elements $f_{d, j} \in I \cap (x^ d)$, $j = 1, \ldots , n_ d$ such that if we write $f_{d, j} = a_{d, j}x^ d + \text{h.o.t}$ then $I_ d = (a_{d, j})$. Denote $I' = (\{ f_{d, j}\} _{d = 0, \ldots , d_0, j = 1, \ldots , n_ d})$. Then it is clear that $I' \subset I$. Pick $f \in I$. First we may choose $c_{d, i} \in R$ such that

Next, we can choose $c_{i, 1} \in R$, $i = 1, \ldots , n_{d_0}$ such that

Next, we can choose $c_{i, 2} \in R$, $i = 1, \ldots , n_{d_0}$ such that

And so on. In the end we see that

is contained in $I'$ as desired. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #343 by Fred on

Comment #352 by Johan on