Lemma 10.160.3. Let $(R, \mathfrak m)$ be a complete local ring. If $\mathfrak m$ is a finitely generated ideal then $R$ is Noetherian.
Proof. See Lemma 10.97.5. $\square$
Lemma 10.160.3. Let $(R, \mathfrak m)$ be a complete local ring. If $\mathfrak m$ is a finitely generated ideal then $R$ is Noetherian.
Proof. See Lemma 10.97.5. $\square$
Comments (0)
There are also: