Lemma 10.159.6. Let $R$ be a Noetherian domain. If $R[z, z^{-1}]$ is N-1, then so is $R$.

**Proof.**
Let $R'$ be the integral closure of $R$ in its field of fractions $K$. Let $S'$ be the integral closure of $R[z, z^{-1}]$ in its field of fractions. Clearly $R' \subset S'$. Since $K[z, z^{-1}]$ is a normal domain we see that $S' \subset K[z, z^{-1}]$. Suppose that $f_1, \ldots , f_ n \in S'$ generate $S'$ as $R[z, z^{-1}]$-module. Say $f_ i = \sum a_{ij}z^ j$ (finite sum), with $a_{ij} \in K$. For any $x \in R'$ we can write

with $h_ i \in R[z, z^{-1}]$. Thus we see that $R'$ is contained in the finite $R$-submodule $\sum Ra_{ij} \subset K$. Since $R$ is Noetherian we conclude that $R'$ is a finite $R$-module. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: