Lemma 33.7.7. Let $k$ be a field. Let $X$ be a scheme over $k$. Let $\overline{k}$ be a separable algebraic closure of $k$. Then $X$ is geometrically connected if and only if the base change $X_{\overline{k}}$ is connected.

**Proof.**
Assume $X_{\overline{k}}$ is connected. Let $k'/k$ be a field extension. There exists a field extension $\overline{k}'/\overline{k}$ such that $k'$ embeds into $\overline{k}'$ as an extension of $k$. By Lemma 33.7.6 we see that $X_{\overline{k}'}$ is connected. Since $X_{\overline{k}'} \to X_{k'}$ is surjective we conclude that $X_{k'}$ is connected as desired.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)