The Stacks project

Lemma 33.8.7. Let $k'/k$ be an extension of fields. Let $X$ be a scheme over $k$. Set $X' = X_{k'}$. Assume $k$ separably algebraically closed. Then the morphism $X' \to X$ induces a bijection of irreducible components.

Proof. Since $k$ is separably algebraically closed we see that $k'$ is geometrically irreducible over $k$, see Algebra, Lemma 10.47.5. Hence $Z = \mathop{\mathrm{Spec}}(k')$ is geometrically irreducible over $k$. by Lemma 33.8.5 above. Since $X' = Z \times _ k X$ the result is a special case of Lemma 33.8.4. $\square$

Comments (0)

There are also:

  • 2 comment(s) on Section 33.8: Geometrically irreducible schemes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 038H. Beware of the difference between the letter 'O' and the digit '0'.