Lemma 18.4.2. Let \mathcal{C} be a category. Let \mathcal{G}, \mathcal{F} be a presheaves of sets. Let \mathcal{A} be an abelian presheaf. Let U be an object of \mathcal{C}. Then we have
\begin{align*} \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(h_ U, \mathcal{F}) & = \mathcal{F}(U), \\ \mathop{\mathrm{Mor}}\nolimits _{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_\mathcal {G}, \mathcal{A}) & = \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(\mathcal{G}, \mathcal{A}), \\ \mathop{\mathrm{Mor}}\nolimits _{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_ U, \mathcal{A}) & = \mathcal{A}(U). \end{align*}
All of these equalities are functorial.
Comments (0)