Lemma 18.4.2. Let $\mathcal{C}$ be a category. Let $\mathcal{G}$, $\mathcal{F}$ be a presheaves of sets. Let $\mathcal{A}$ be an abelian presheaf. Let $U$ be an object of $\mathcal{C}$. Then we have

\begin{align*} \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(h_ U, \mathcal{F}) & = \mathcal{F}(U), \\ \mathop{\mathrm{Mor}}\nolimits _{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_\mathcal {G}, \mathcal{A}) & = \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(\mathcal{G}, \mathcal{A}), \\ \mathop{\mathrm{Mor}}\nolimits _{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_ U, \mathcal{A}) & = \mathcal{A}(U). \end{align*}

All of these equalities are functorial.

## Comments (0)