The Stacks project

18.4 Free abelian presheaves

In order to prepare notation for the following definition, let us agree to denote the free abelian group on a set $S$ as1 $\mathbf{Z}[S] = \bigoplus _{s \in S} \mathbf{Z}$. It is characterized by the property

\[ \mathop{\mathrm{Mor}}\nolimits _{\textit{Ab}}(\mathbf{Z}[S], A) = \mathop{\mathrm{Mor}}\nolimits _{\textit{Sets}}(S, A) \]

In other words the construction $S \mapsto \mathbf{Z}[S]$ is a left adjoint to the forgetful functor $\textit{Ab} \to \textit{Sets}$.

Definition 18.4.1. Let $\mathcal{C}$ be a category. Let $\mathcal{G}$ be a presheaf of sets. The free abelian presheaf $\mathbf{Z}_\mathcal {G}$ on $\mathcal{G}$ is the abelian presheaf defined by the rule

\[ U \longmapsto \mathbf{Z}[\mathcal{G}(U)]. \]

In the special case $\mathcal{G} = h_ X$ of a representable presheaf associated to an object $X$ of $\mathcal{C}$ we use the notation $\mathbf{Z}_ X = \mathbf{Z}_{h_ X}$. In other words

\[ \mathbf{Z}_ X(U) = \mathbf{Z}[\mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(U, X)]. \]

This construction is clearly functorial in the presheaf $\mathcal{G}$. In fact it is adjoint to the forgetful functor $\textit{PAb}(\mathcal{C}) \to \textit{PSh}(\mathcal{C})$. Here is the precise statement.

Lemma 18.4.2. Let $\mathcal{C}$ be a category. Let $\mathcal{G}$, $\mathcal{F}$ be a presheaves of sets. Let $\mathcal{A}$ be an abelian presheaf. Let $U$ be an object of $\mathcal{C}$. Then we have

\begin{align*} \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(h_ U, \mathcal{F}) & = \mathcal{F}(U), \\ \mathop{\mathrm{Mor}}\nolimits _{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_\mathcal {G}, \mathcal{A}) & = \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(\mathcal{G}, \mathcal{A}), \\ \mathop{\mathrm{Mor}}\nolimits _{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_ U, \mathcal{A}) & = \mathcal{A}(U). \end{align*}

All of these equalities are functorial.

Proof. Omitted. $\square$

Lemma 18.4.3. Let $\mathcal{C}$ be a category. Let $I$ be a set. For each $i \in I$ let $\mathcal{G}_ i$ be a presheaf of sets. Then

\[ \mathbf{Z}_{\coprod _ i \mathcal{G}_ i} = \bigoplus \nolimits _{i \in I} \mathbf{Z}_{\mathcal{G}_ i} \]

in $\textit{PAb}(\mathcal{C})$.

Proof. Omitted. $\square$

[1] In other chapters the notation $\mathbf{Z}[S]$ sometimes indicates the polynomial ring over $\mathbf{Z}$ on $S$.

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03CP. Beware of the difference between the letter 'O' and the digit '0'.