The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

18.5 Free abelian sheaves

Here is the notion of a free abelian sheaf on a sheaf of sets.

Definition 18.5.1. Let $\mathcal{C}$ be a site. Let $\mathcal{G}$ be a presheaf of sets. The free abelian sheaf $\mathbf{Z}_\mathcal {G}^\# $ on $\mathcal{G}$ is the abelian sheaf $\mathbf{Z}_\mathcal {G}^\# $ which is the sheafification of the abelian presheaf on $\mathcal{G}$. In the special case $\mathcal{G} = h_ X$ of a representable presheaf associated to an object $X$ of $\mathcal{C}$ we use the notation $\mathbf{Z}_ X^\# $.

This construction is clearly functorial in the presheaf $\mathcal{G}$. In fact it provides an adjoint to the forgetful functor $\textit{Ab}(\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$. Here is the precise statement.

Lemma 18.5.2. Let $\mathcal{C}$ be a site. Let $\mathcal{G}$, $\mathcal{F}$ be a sheaves of sets. Let $\mathcal{A}$ be an abelian sheaf. Let $U$ be an object of $\mathcal{C}$. Then we have

\begin{align*} \mathop{Mor}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{C})}(h_ U^\# , \mathcal{F}) & = \mathcal{F}(U), \\ \mathop{Mor}\nolimits _{\textit{Ab}(\mathcal{C})}(\mathbf{Z}_\mathcal {G}^\# , \mathcal{A}) & = \mathop{Mor}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{C})}(\mathcal{G}, \mathcal{A}), \\ \mathop{Mor}\nolimits _{\textit{Ab}(\mathcal{C})}(\mathbf{Z}_ U^\# , \mathcal{A}) & = \mathcal{A}(U). \end{align*}

All of these equalities are functorial.

Proof. Omitted. $\square$

Lemma 18.5.3. Let $\mathcal{C}$ be a site. Let $\mathcal{G}$ be a presheaf of sets. Then $\mathbf{Z}_\mathcal {G}^\# = (\mathbf{Z}_{\mathcal{G}^\# })^\# $.

Proof. Omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03CQ. Beware of the difference between the letter 'O' and the digit '0'.