Definition 18.6.1. Ringed sites.

1. A ringed site is a pair $(\mathcal{C}, \mathcal{O})$ where $\mathcal{C}$ is a site and $\mathcal{O}$ is a sheaf of rings on $\mathcal{C}$. The sheaf $\mathcal{O}$ is called the structure sheaf of the ringed site.

2. Let $(\mathcal{C}, \mathcal{O})$, $(\mathcal{C}', \mathcal{O}')$ be ringed sites. A morphism of ringed sites

$(f, f^\sharp ) : (\mathcal{C}, \mathcal{O}) \longrightarrow (\mathcal{C}', \mathcal{O}')$

is given by a morphism of sites $f : \mathcal{C} \to \mathcal{C}'$ (see Sites, Definition 7.14.1) together with a map of sheaves of rings $f^\sharp : f^{-1}\mathcal{O}' \to \mathcal{O}$, which by adjunction is the same thing as a map of sheaves of rings $f^\sharp : \mathcal{O}' \to f_*\mathcal{O}$.

3. Let $(f, f^\sharp ) : (\mathcal{C}_1, \mathcal{O}_1) \to (\mathcal{C}_2, \mathcal{O}_2)$ and $(g, g^\sharp ) : (\mathcal{C}_2, \mathcal{O}_2) \to (\mathcal{C}_3, \mathcal{O}_3)$ be morphisms of ringed sites. Then we define the composition of morphisms of ringed sites by the rule

$(g, g^\sharp ) \circ (f, f^\sharp ) = (g \circ f, f^\sharp \circ g^\sharp ).$

Here we use composition of morphisms of sites defined in Sites, Definition 7.14.5 and $f^\sharp \circ g^\sharp$ indicates the morphism of sheaves of rings

$\mathcal{O}_3 \xrightarrow {g^\sharp } g_*\mathcal{O}_2 \xrightarrow {g_*f^\sharp } g_*f_*\mathcal{O}_1 = (g \circ f)_*\mathcal{O}_1$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).