The Stacks project

Lemma 18.7.2. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. There exists a factorization

\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \ar[rr]_{(f, f^\sharp )} \ar[d]_{(g, g^\sharp )} & & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) \ar[d]^{(e, e^\sharp )} \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[rr]^{(h, h^\sharp )} & & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) } \]

where

  1. $g : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}')$ is an equivalence of topoi induced by a special cocontinuous functor $\mathcal{C} \to \mathcal{C}'$ (see Sites, Definition 7.29.2),

  2. $e : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D}')$ is an equivalence of topoi induced by a special cocontinuous functor $\mathcal{D} \to \mathcal{D}'$ (see Sites, Definition 7.29.2),

  3. $\mathcal{O}_{\mathcal{C}'} = g_*\mathcal{O}_\mathcal {C}$ and $g^\sharp $ is the obvious map,

  4. $\mathcal{O}_{\mathcal{D}'} = e_*\mathcal{O}_\mathcal {D}$ and $e^\sharp $ is the obvious map,

  5. the sites $\mathcal{C}'$ and $\mathcal{D}'$ have final objects and fibre products (i.e., all finite limits),

  6. $h$ is a morphism of sites induced by a continuous functor $u : \mathcal{D}' \to \mathcal{C}'$ which commutes with all finite limits (i.e., it satisfies the assumptions of Sites, Proposition 7.14.7), and

  7. given any set of sheaves $\mathcal{F}_ i$ (resp. $\mathcal{G}_ j$) on $\mathcal{C}$ (resp. $\mathcal{D}$) we may assume each of these is a representable sheaf on $\mathcal{C}'$ (resp. $\mathcal{D}'$).

Moreover, if $(f, f^\sharp )$ is an equivalence of ringed topoi, then we can choose the diagram such that $\mathcal{C}' = \mathcal{D}'$, $\mathcal{O}_{\mathcal{C}'} = \mathcal{O}_{\mathcal{D}'}$ and $(h, h^\sharp )$ is the identity.

Proof. This follows from Sites, Lemma 7.29.6, and Sites, Remarks 7.29.7 and 7.29.8. You just have to carry along the sheaves of rings. Some details omitted. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 18.7: Ringed topoi

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03CR. Beware of the difference between the letter 'O' and the digit '0'.