Definition 18.7.1. Ringed topoi.

A

*ringed topos*is a pair $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$ where $\mathcal{C}$ is a site and $\mathcal{O}$ is a sheaf of rings on $\mathcal{C}$. The sheaf $\mathcal{O}$ is called the*structure sheaf*of the ringed topos.Let $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$, $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be ringed topoi. A

*morphism of ringed topoi*\[ (f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \longrightarrow (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \]is given by a morphism of topoi $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}')$ (see Sites, Definition 7.15.1) together with a map of sheaves of rings $f^\sharp : f^{-1}\mathcal{O}' \to \mathcal{O}$, which by adjunction is the same thing as a map of sheaves of rings $f^\sharp : \mathcal{O}' \to f_*\mathcal{O}$.

Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_1), \mathcal{O}_1) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_2), \mathcal{O}_2)$ and $(g, g^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_2), \mathcal{O}_2) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_3), \mathcal{O}_3)$ be morphisms of ringed topoi. Then we define the

*composition of morphisms of ringed topoi*by the rule\[ (g, g^\sharp ) \circ (f, f^\sharp ) = (g \circ f, f^\sharp \circ g^\sharp ). \]Here we use composition of morphisms of topoi defined in Sites, Definition 7.15.1 and $f^\sharp \circ g^\sharp $ indicates the morphism of sheaves of rings

\[ \mathcal{O}_3 \xrightarrow {g^\sharp } g_*\mathcal{O}_2 \xrightarrow {g_*f^\sharp } g_*f_*\mathcal{O}_1 = (g \circ f)_*\mathcal{O}_1 \]

## Comments (2)

Comment #5016 by Théo de Oliveira Santos on

Comment #5257 by Johan on

There are also: