Definition 18.9.1. Let \mathcal{C} be a category, and let \mathcal{O} be a presheaf of rings on \mathcal{C}.
A presheaf of \mathcal{O}-modules is given by an abelian presheaf \mathcal{F} together with a map of presheaves of sets
\mathcal{O} \times \mathcal{F} \longrightarrow \mathcal{F}such that for every object U of \mathcal{C} the map \mathcal{O}(U) \times \mathcal{F}(U) \to \mathcal{F}(U) defines the structure of an \mathcal{O}(U)-module structure on the abelian group \mathcal{F}(U).
A morphism \varphi : \mathcal{F} \to \mathcal{G} of presheaves of \mathcal{O}-modules is a morphism of abelian presheaves \varphi : \mathcal{F} \to \mathcal{G} such that the diagram
\xymatrix{ \mathcal{O} \times \mathcal{F} \ar[r] \ar[d]_{\text{id} \times \varphi } & \mathcal{F} \ar[d]^{\varphi } \\ \mathcal{O} \times \mathcal{G} \ar[r] & \mathcal{G} }commutes.
The set of \mathcal{O}-module morphisms as above is denoted \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}).
The category of presheaves of \mathcal{O}-modules is denoted \textit{PMod}(\mathcal{O}).
Comments (0)