## 18.9 Presheaves of modules

Let $\mathcal{C}$ be a category. Let $\mathcal{O}$ be a presheaf of rings on $\mathcal{C}$. At this point we have not yet defined a presheaf of $\mathcal{O}$-modules. Thus we do so right now.

Definition 18.9.1. Let $\mathcal{C}$ be a category, and let $\mathcal{O}$ be a presheaf of rings on $\mathcal{C}$.

A *presheaf of $\mathcal{O}$-modules* is given by an abelian presheaf $\mathcal{F}$ together with a map of presheaves of sets

\[ \mathcal{O} \times \mathcal{F} \longrightarrow \mathcal{F} \]

such that for every object $U$ of $\mathcal{C}$ the map $\mathcal{O}(U) \times \mathcal{F}(U) \to \mathcal{F}(U)$ defines the structure of an $\mathcal{O}(U)$-module structure on the abelian group $\mathcal{F}(U)$.

A *morphism $\varphi : \mathcal{F} \to \mathcal{G}$ of presheaves of $\mathcal{O}$-modules* is a morphism of abelian presheaves $\varphi : \mathcal{F} \to \mathcal{G}$ such that the diagram

\[ \xymatrix{ \mathcal{O} \times \mathcal{F} \ar[r] \ar[d]_{\text{id} \times \varphi } & \mathcal{F} \ar[d]^{\varphi } \\ \mathcal{O} \times \mathcal{G} \ar[r] & \mathcal{G} } \]

commutes.

The set of $\mathcal{O}$-module morphisms as above is denoted $\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G})$.

The category of presheaves of $\mathcal{O}$-modules is denoted $\textit{PMod}(\mathcal{O})$.

Suppose that $\mathcal{O}_1 \to \mathcal{O}_2$ is a morphism of presheaves of rings on the category $\mathcal{C}$. In this case, if $\mathcal{F}$ is a presheaf of $\mathcal{O}_2$-modules then we can think of $\mathcal{F}$ as a presheaf of $\mathcal{O}_1$-modules by using the composition

\[ \mathcal{O}_1 \times \mathcal{F} \to \mathcal{O}_2 \times \mathcal{F} \to \mathcal{F}. \]

We sometimes denote this by $\mathcal{F}_{\mathcal{O}_1}$ to indicate the restriction of rings. We call this the *restriction of $\mathcal{F}$*. We obtain the restriction functor

\[ \textit{PMod}(\mathcal{O}_2) \longrightarrow \textit{PMod}(\mathcal{O}_1) \]

On the other hand, given a presheaf of $\mathcal{O}_1$-modules $\mathcal{G}$ we can construct a presheaf of $\mathcal{O}_2$-modules $\mathcal{O}_2 \otimes _{p, \mathcal{O}_1} \mathcal{G}$ by the rule

\[ U \longmapsto \left(\mathcal{O}_2 \otimes _{p, \mathcal{O}_1} \mathcal{G}\right)(U) = \mathcal{O}_2(U) \otimes _{\mathcal{O}_1(U)} \mathcal{G}(U) \]

where $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, with obvious restriction mappings. The index $p$ stands for “presheaf” and not “point”. This presheaf is called the tensor product presheaf. We obtain the *change of rings* functor

\[ \textit{PMod}(\mathcal{O}_1) \longrightarrow \textit{PMod}(\mathcal{O}_2) \]

Lemma 18.9.2. With $\mathcal{C}$, $\mathcal{O}_1 \to \mathcal{O}_2$, $\mathcal{F}$ and $\mathcal{G}$ as above there exists a canonical bijection

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_1}(\mathcal{G}, \mathcal{F}_{\mathcal{O}_1}) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_2}( \mathcal{O}_2 \otimes _{p, \mathcal{O}_1} \mathcal{G}, \mathcal{F} ) \]

In other words, the restriction and change of rings functors defined above are adjoint to each other.

**Proof.**
This follows from the fact that for a ring map $A \to B$ the restriction functor and the change of ring functor are adjoint to each other.
$\square$

## Comments (0)