Definition 18.10.1. Let $\mathcal{C}$ be a site. Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$.
A sheaf of $\mathcal{O}$-modules is a presheaf of $\mathcal{O}$-modules $\mathcal{F}$, see Definition 18.9.1, such that the underlying presheaf of abelian groups $\mathcal{F}$ is a sheaf.
A morphism of sheaves of $\mathcal{O}$-modules is a morphism of presheaves of $\mathcal{O}$-modules.
Given sheaves of $\mathcal{O}$-modules $\mathcal{F}$ and $\mathcal{G}$ we denote $\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G})$ the set of morphism of sheaves of $\mathcal{O}$-modules.
The category of sheaves of $\mathcal{O}$-modules is denoted $\textit{Mod}(\mathcal{O})$.
Comments (0)