Lemma 7.28.4. Let \mathcal{C}, \mathcal{D} be sites. Let u : \mathcal{C} \to \mathcal{D} be a cocontinuous functor. Let U be an object of \mathcal{C}, and set V = u(U). We have a commutative diagram
\xymatrix{ \mathcal{C}/U \ar[r]_{j_ U} \ar[d]_{u'} & \mathcal{C} \ar[d]^ u \\ \mathcal{D}/V \ar[r]^-{j_ V} & \mathcal{D} }
where the left vertical arrow is u' : \mathcal{C}/U \to \mathcal{D}/V, U'/U \mapsto V'/V. Then u' is cocontinuous also and we get a commutative diagram of topoi
\xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \ar[r]_{j_ U} \ar[d]_{f'} & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \ar[d]^ f \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{D}/V) \ar[r]^-{j_ V} & \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) }
where f (resp. f') corresponds to u (resp. u').
Proof.
The commutativity of the first diagram is clear. It implies the commutativity of the second diagram provided we show that u' is cocontinuous.
Let U'/U be an object of \mathcal{C}/U. Let \{ V_ j/V \to u(U')/V\} _{j \in J} be a covering of u(U')/V in \mathcal{D}/V. Since u is cocontinuous there exists a covering \{ U_ i' \to U'\} _{i \in I} such that the family \{ u(U_ i') \to u(U')\} refines the covering \{ V_ j \to u(U')\} in \mathcal{D}. In other words, there exists a map of index sets \alpha : I \to J and morphisms \phi _ i : u(U_ i') \to V_{\alpha (i)} over U'. Think of U_ i' as an object over U via the composition U'_ i \to U' \to U. Then \{ U'_ i/U \to U'/U\} is a covering of \mathcal{C}/U such that \{ u(U_ i')/V \to u(U')/V\} refines \{ V_ j/V \to u(U')/V\} (use the same \alpha and the same maps \phi _ i). Hence u' : \mathcal{C}/U \to \mathcal{D}/V is cocontinuous.
\square
Comments (0)
There are also: