Loading web-font TeX/Caligraphic/Regular

The Stacks project

Lemma 7.28.4. Let \mathcal{C}, \mathcal{D} be sites. Let u : \mathcal{C} \to \mathcal{D} be a cocontinuous functor. Let U be an object of \mathcal{C}, and set V = u(U). We have a commutative diagram

\xymatrix{ \mathcal{C}/U \ar[r]_{j_ U} \ar[d]_{u'} & \mathcal{C} \ar[d]^ u \\ \mathcal{D}/V \ar[r]^-{j_ V} & \mathcal{D} }

where the left vertical arrow is u' : \mathcal{C}/U \to \mathcal{D}/V, U'/U \mapsto V'/V. Then u' is cocontinuous also and we get a commutative diagram of topoi

\xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \ar[r]_{j_ U} \ar[d]_{f'} & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \ar[d]^ f \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{D}/V) \ar[r]^-{j_ V} & \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) }

where f (resp. f') corresponds to u (resp. u').

Proof. The commutativity of the first diagram is clear. It implies the commutativity of the second diagram provided we show that u' is cocontinuous.

Let U'/U be an object of \mathcal{C}/U. Let \{ V_ j/V \to u(U')/V\} _{j \in J} be a covering of u(U')/V in \mathcal{D}/V. Since u is cocontinuous there exists a covering \{ U_ i' \to U'\} _{i \in I} such that the family \{ u(U_ i') \to u(U')\} refines the covering \{ V_ j \to u(U')\} in \mathcal{D}. In other words, there exists a map of index sets \alpha : I \to J and morphisms \phi _ i : u(U_ i') \to V_{\alpha (i)} over U'. Think of U_ i' as an object over U via the composition U'_ i \to U' \to U. Then \{ U'_ i/U \to U'/U\} is a covering of \mathcal{C}/U such that \{ u(U_ i')/V \to u(U')/V\} refines \{ V_ j/V \to u(U')/V\} (use the same \alpha and the same maps \phi _ i). Hence u' : \mathcal{C}/U \to \mathcal{D}/V is cocontinuous. \square


Comments (0)

There are also:

  • 3 comment(s) on Section 7.28: Localization and morphisms

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.