The Stacks project

Lemma 18.27.4. Let $\mathcal{C}$ be a category. Let $\mathcal{O}$ be a presheaf of rings.

  1. Let $\mathcal{F}$, $\mathcal{G}$, $\mathcal{H}$ be presheaves of $\mathcal{O}$-modules. There is a canonical isomorphism

    \[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O} (\mathcal{F} \otimes _{p, \mathcal{O}} \mathcal{G}, \mathcal{H}) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O} (\mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{G}, \mathcal{H})) \]

    which is functorial in all three entries (sheaf Hom in all three spots). In particular,

    \[ \mathop{Mor}\nolimits _{\textit{PMod}(\mathcal{O})}( \mathcal{F} \otimes _{p, \mathcal{O}} \mathcal{G}, \mathcal{H}) = \mathop{Mor}\nolimits _{\textit{PMod}(\mathcal{O})}( \mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{G}, \mathcal{H})) \]
  2. Suppose that $\mathcal{C}$ is a site, $\mathcal{O}$ is a sheaf of rings, and $\mathcal{F}$, $\mathcal{G}$, $\mathcal{H}$ are sheaves of $\mathcal{O}$-modules. There is a canonical isomorphism

    \[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O} (\mathcal{F} \otimes _\mathcal {O} \mathcal{G}, \mathcal{H}) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O} (\mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{G}, \mathcal{H})) \]

    which is functorial in all three entries (sheaf Hom in all three spots). In particular,

    \[ \mathop{Mor}\nolimits _{\textit{Mod}(\mathcal{O})}( \mathcal{F} \otimes _\mathcal {O} \mathcal{G}, \mathcal{H}) = \mathop{Mor}\nolimits _{\textit{Mod}(\mathcal{O})}( \mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{G}, \mathcal{H})) \]

Proof. This is the analogue of Algebra, Lemma 10.12.8. The proof is the same, and is omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03EO. Beware of the difference between the letter 'O' and the digit '0'.