Lemma 18.27.6. Let $\mathcal{C}$ be a category. Let $\mathcal{O}$ be a presheaf of rings.
Let $\mathcal{F}$, $\mathcal{G}$, $\mathcal{H}$ be presheaves of $\mathcal{O}$-modules. There is a canonical isomorphism
\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O} (\mathcal{F} \otimes _{p, \mathcal{O}} \mathcal{G}, \mathcal{H}) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O} (\mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{G}, \mathcal{H})) \]which is functorial in all three entries (sheaf Hom in all three spots). In particular,
\[ \mathop{\mathrm{Mor}}\nolimits _{\textit{PMod}(\mathcal{O})}( \mathcal{F} \otimes _{p, \mathcal{O}} \mathcal{G}, \mathcal{H}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{PMod}(\mathcal{O})}( \mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{G}, \mathcal{H})) \]Suppose that $\mathcal{C}$ is a site, $\mathcal{O}$ is a sheaf of rings, and $\mathcal{F}$, $\mathcal{G}$, $\mathcal{H}$ are sheaves of $\mathcal{O}$-modules. There is a canonical isomorphism
\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O} (\mathcal{F} \otimes _\mathcal {O} \mathcal{G}, \mathcal{H}) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O} (\mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{G}, \mathcal{H})) \]which is functorial in all three entries (sheaf Hom in all three spots). In particular,
\[ \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}( \mathcal{F} \otimes _\mathcal {O} \mathcal{G}, \mathcal{H}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}( \mathcal{F}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{G}, \mathcal{H})) \]
Comments (0)