Lemma 18.27.5. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$, $\mathcal{G}$ be $\mathcal{O}$-modules.

1. If $\mathcal{F}_2 \to \mathcal{F}_1 \to \mathcal{F} \to 0$ is an exact sequence of $\mathcal{O}$-modules, then

$0 \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}_1, \mathcal{G}) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}_2, \mathcal{G})$

is exact.

2. If $0 \to \mathcal{G} \to \mathcal{G}_1 \to \mathcal{G}_2$ is an exact sequence of $\mathcal{O}$-modules, then

$0 \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}_1) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}_2)$

is exact.

Proof. Follows from Lemma 18.27.4 and Homology, Lemma 12.7.2. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).