Lemma 18.28.2. Let \mathcal{C} be a category. Let \mathcal{O} be a presheaf of rings. Let \mathcal{F} be a presheaf of \mathcal{O}-modules. If each \mathcal{F}(U) is a flat \mathcal{O}(U)-module, then \mathcal{F} is flat.
Proof. This is immediate from the definitions. \square
Comments (0)