Lemma 18.28.3. Let $\mathcal{C}$ be a site. Let $\mathcal{O}$ be a presheaf of rings. Let $\mathcal{F}$ be a presheaf of $\mathcal{O}$-modules. If $\mathcal{F}$ is a flat $\mathcal{O}$-module, then $\mathcal{F}^\# $ is a flat $\mathcal{O}^\# $-module.
Proof. Omitted. (Hint: Sheafification is exact.) $\square$
Comments (0)