Lemma 18.28.8. Let $\mathcal{C}$ be a category. Let $\mathcal{O}$ be a presheaf of rings.
Any presheaf of $\mathcal{O}$-modules is a quotient of a direct sum $\bigoplus j_{U_ i!}\mathcal{O}_{U_ i}$.
Any presheaf of $\mathcal{O}$-modules is a quotient of a flat presheaf of $\mathcal{O}$-modules.
If $\mathcal{C}$ is a site, $\mathcal{O}$ is a sheaf of rings, then any sheaf of $\mathcal{O}$-modules is a quotient of a direct sum $\bigoplus j_{U_ i!}\mathcal{O}_{U_ i}$.
If $\mathcal{C}$ is a site, $\mathcal{O}$ is a sheaf of rings, then any sheaf of $\mathcal{O}$-modules is a quotient of a flat sheaf of $\mathcal{O}$-modules.
Comments (0)