Lemma 18.28.7. Let $\mathcal{C}$ be a category. Let $\mathcal{O}$ be a presheaf of rings. Let $U$ be an object of $\mathcal{C}$. Consider the functor $j_ U : \mathcal{C}/U \to \mathcal{C}$.

1. The presheaf of $\mathcal{O}$-modules $j_{U!}\mathcal{O}_ U$ (see Remark 18.19.7) is flat.

2. If $\mathcal{C}$ is a site, $\mathcal{O}$ is a sheaf of rings, $j_{U!}\mathcal{O}_ U$ is a flat sheaf of $\mathcal{O}$-modules.

Proof. Proof of (1). By the discussion in Remark 18.19.7 we see that

$j_{U!}\mathcal{O}_ U(V) = \bigoplus \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{O}(V)$

which is a flat $\mathcal{O}(V)$-module. Hence (1) follows from Lemma 18.28.2. Then (2) follows as $j_{U!}\mathcal{O}_ U = (j_{U!}\mathcal{O}_ U)^\#$ (the first $j_{U!}$ on sheaves, the second on presheaves) and Lemma 18.28.3. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).