Lemma 18.28.6. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $U$ be an object of $\mathcal{C}$. If $\mathcal{F}$ is a flat $\mathcal{O}$-module, then $\mathcal{F}|_ U$ is a flat $\mathcal{O}_ U$-module.

**Proof.**
Let $\mathcal{G}_1 \to \mathcal{G}_2 \to \mathcal{G}_3$ be an exact complex of $\mathcal{O}_ U$-modules. Since $j_{U!}$ is exact (Lemma 18.19.3) and $\mathcal{F}$ is flat as an $\mathcal{O}$-modules then we see that the complex made up of the modules

(Lemma 18.27.9) is exact. We conclude that $\mathcal{G}_1 \otimes _{\mathcal{O}_ U} \mathcal{F}|_ U \to \mathcal{G}_2 \otimes _{\mathcal{O}_ U} \mathcal{F}|_ U \to \mathcal{G}_3 \otimes _{\mathcal{O}_ U} \mathcal{F}|_ U$ is exact by Lemma 18.19.4. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)