Lemma 18.27.9. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. For $\mathcal{G}$ in $\textit{Mod}(\mathcal{O}_ U)$ and $\mathcal{F}$ in $\textit{Mod}(\mathcal{O})$ we have $j_{U!}\mathcal{G} \otimes _\mathcal {O} \mathcal{F} = j_{U!}(\mathcal{G} \otimes _{\mathcal{O}_ U} \mathcal{F}|_ U)$.
Proof. Let $\mathcal{H}$ be an object of $\textit{Mod}(\mathcal{O})$. Then
The first equality because $j_{U!}$ is a left adjoint to restriction of modules. The second by Lemma 18.27.6. The third by Lemma 18.27.2. The fourth because $j_{U!}$ is a left adjoint to restriction of modules. The fifth by Lemma 18.27.6. The lemma follows from this and the Yoneda lemma. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)