Remark 18.27.10. Let $\mathcal{C}$ be a site. Let $\mathcal{F}$ be a sheaf of sets on $\mathcal{C}$ and consider the localization morphism $j : \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F} \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$. See Sites, Definition 7.30.4. We claim that (a) $j_!\mathbf{Z} = \mathbf{Z}_\mathcal {F}^\#$ and (b) $j_!(j^{-1}\mathcal{H}) = j_!\mathbf{Z} \otimes _\mathbf {Z} \mathcal{H}$ for any abelian sheaf $\mathcal{H}$ on $\mathcal{C}$. Let $\mathcal{G}$ be an abelian on $\mathcal{C}$. Part (a) follows from the Yoneda lemma because

$\mathop{\mathrm{Hom}}\nolimits (j_!\mathbf{Z}, \mathcal{G}) = \mathop{\mathrm{Hom}}\nolimits (\mathbf{Z}, j^{-1}\mathcal{G}) = \mathop{\mathrm{Hom}}\nolimits (\mathbf{Z}_\mathcal {F}^\# , \mathcal{G})$

where the second equality holds because both sides of the equality evaluate to the set of maps from $\mathcal{F} \to \mathcal{G}$ viewed as an abelian group. For (b) we use the Yoneda lemma and

\begin{align*} \mathop{\mathrm{Hom}}\nolimits (j_!(j^{-1}\mathcal{H}), \mathcal{G}) & = \mathop{\mathrm{Hom}}\nolimits (j^{-1}\mathcal{H}, j^{-1}\mathcal{G}) \\ & = \mathop{\mathrm{Hom}}\nolimits (\mathbf{Z}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits (j^{-1}\mathcal{H}, j^{-1}\mathcal{G})) \\ & = \mathop{\mathrm{Hom}}\nolimits (\mathbf{Z}, j^{-1}\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{H}, \mathcal{G})) \\ & = \mathop{\mathrm{Hom}}\nolimits (j_!\mathbf{Z}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{H}, \mathcal{G})) \\ & = \mathop{\mathrm{Hom}}\nolimits (j_!\mathbf{Z} \otimes _\mathbf {Z} \mathcal{H}, \mathcal{G}) \end{align*}

Here we use adjunction, the fact that taking $\mathop{\mathcal{H}\! \mathit{om}}\nolimits$ commutes with localization, and Lemma 18.27.6.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EYY. Beware of the difference between the letter 'O' and the digit '0'.