The Stacks project

Lemma 18.27.11. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$ be an $\mathcal{O}$-module of finite presentation. Let $\mathcal{G} = \mathop{\mathrm{colim}}\nolimits _{\lambda \in \Lambda } \mathcal{G}_\lambda $ be a filtered colimit of $\mathcal{O}$-modules. Then the canonical map

\[ \mathop{\mathrm{colim}}\nolimits _\lambda \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}_\lambda ) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \]

is an isomorphism.

Proof. It suffices to show the arrow is an isomorphism after restriction to $U$ for all $U$ in $\mathcal{C}$. Both taking colimits of sheaves of modules and taking internal hom commute with restriction to $U$. See for example Lemmas 18.14.3 and 18.27.2. Fix $U$. Given a covering $\{ U_ i \to U\} _{i \in I}$, then it suffices to prove the restriction to each $U_ i$ is an isomorphism. Hence we may assume $\mathcal{F}$ has a global presentation

\[ \bigoplus \nolimits _{j = 1, \ldots , m} \mathcal{O} \longrightarrow \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{O} \to \mathcal{F} \to 0 \]

The functor $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(-, -)$ commutes with finite direct sums in either variable and $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}, -)$ is the identity functor. By this and by Lemma 18.27.5 we obtain an exact sequence

\[ 0 \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \to \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{G} \to \bigoplus \nolimits _{j = 1, \ldots , m} \mathcal{G} \]

Since filtered colimits are exact in $\textit{Mod}(\mathcal{O})$ by Lemma 18.14.2 also the top row in the following commutative diagram is exact

\[ \xymatrix{ 0 \ar[r] & \mathop{\mathrm{colim}}\nolimits _\lambda \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}_\lambda ) \ar[r] \ar[d] & \mathop{\mathrm{colim}}\nolimits _\lambda \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{G}_\lambda \ar[r] \ar[d] & \mathop{\mathrm{colim}}\nolimits _\lambda \bigoplus \nolimits _{j = 1, \ldots , m} \mathcal{G}_\lambda \ar[d] \\ 0 \ar[r] & \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \ar[r] & \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{G} \ar[r] & \bigoplus \nolimits _{j = 1, \ldots , m} \mathcal{G} } \]

Since the right two vertical arrows are isomorphisms we conclude. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GMZ. Beware of the difference between the letter 'O' and the digit '0'.