## Tag `0E8G`

Chapter 18: Modules on Sites > Section 18.19: Localization of ringed sites

Lemma 18.19.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $U \in \mathop{\mathrm{Ob}}\nolimits(\mathcal{C})$. A complex of $\mathcal{O}_U$-modules $\mathcal{G}_1 \to \mathcal{G}_2 \to \mathcal{G}_3$ is exact if and only if $j_{U!}\mathcal{G}_1 \to j_{U!}\mathcal{G}_2 \to j_{U!}\mathcal{G}_3$ is exact as a sequence of $\mathcal{O}$-modules.

Proof.We already know that $j_{U!}$ is exact, see Lemma 18.19.3. Thus it suffices to show that $j_{U!} : \textit{Mod}(\mathcal{O}_U) \to \textit{Mod}(\mathcal{O})$ reflects injections and surjections.For every $\mathcal{G}$ in $\textit{Mod}(\mathcal{O}_U)$ we have the unit $\mathcal{G} \to j_U^*j_{U!}\mathcal{G}$ of the adjunction. We claim this map is an injection of sheaves. Namely, looking at the construction of Lemma 18.19.2 we see that this map is the sheafification of the rule sending the object $V/U$ of $\mathcal{C}/U$ to the injective map $$ \mathcal{G}(V/U) \longrightarrow \bigoplus\nolimits_{\varphi \in \mathop{Mor}\nolimits_\mathcal{C}(V, U)} \mathcal{G}(V \xrightarrow{\varphi} U) $$ given by the inclusion of the summand corresponding to the structure morphism $V \to U$. Since sheafification is exact the claim follows. Some details omitted.

If $\mathcal{G} \to \mathcal{G}'$ is a map of $\mathcal{O}_U$-modules with $j_{U!}\mathcal{G} \to j_{U!}\mathcal{G}'$ injective, then $j_U^*j_{U!}\mathcal{G} \to j_U^*j_{U!}\mathcal{G}'$ is injective (restriction is exact), hence $\mathcal{G} \to j_U^*j_{U!}\mathcal{G}'$ is injective, hence $\mathcal{G} \to \mathcal{G}'$ is injective. We conclude that $j_{U!}$ reflects injections.

Let $a : \mathcal{G} \to \mathcal{G}'$ be a map of $\mathcal{O}_U$-modules such that $j_{U!}\mathcal{G} \to j_{U!}\mathcal{G}'$ is surjective. Let $\mathcal{H}$ be the cokernel of $a$. Then $j_{U!}\mathcal{H} = 0$ as $j_{U!}$ is exact. By the above the map $\mathcal{H} \to j^*_U j_{U!}\mathcal{H}$ is injective. Hence $\mathcal{H} = 0$ as desired. $\square$

The code snippet corresponding to this tag is a part of the file `sites-modules.tex` and is located in lines 2170–2178 (see updates for more information).

```
\begin{lemma}
\label{lemma-j-shriek-reflects-exactness}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $U \in \Ob(\mathcal{C})$. A complex of $\mathcal{O}_U$-modules
$\mathcal{G}_1 \to \mathcal{G}_2 \to \mathcal{G}_3$ is exact
if and only if
$j_{U!}\mathcal{G}_1 \to j_{U!}\mathcal{G}_2 \to j_{U!}\mathcal{G}_3$
is exact as a sequence of $\mathcal{O}$-modules.
\end{lemma}
\begin{proof}
We already know that $j_{U!}$ is exact, see
Lemma \ref{lemma-extension-by-zero-exact}.
Thus it suffices to show that
$j_{U!} : \textit{Mod}(\mathcal{O}_U) \to \textit{Mod}(\mathcal{O})$
reflects injections and surjections.
\medskip\noindent
For every $\mathcal{G}$ in $\textit{Mod}(\mathcal{O}_U)$
we have the unit $\mathcal{G} \to j_U^*j_{U!}\mathcal{G}$
of the adjunction. We claim this map is an injection of sheaves.
Namely, looking at the construction of Lemma \ref{lemma-extension-by-zero}
we see that this map is the sheafification of the rule sending the object
$V/U$ of $\mathcal{C}/U$ to the injective map
$$
\mathcal{G}(V/U) \longrightarrow
\bigoplus\nolimits_{\varphi \in \Mor_\mathcal{C}(V, U)}
\mathcal{G}(V \xrightarrow{\varphi} U)
$$
given by the inclusion of the summand corresponding to the structure
morphism $V \to U$. Since sheafification is exact the claim follows.
Some details omitted.
\medskip\noindent
If $\mathcal{G} \to \mathcal{G}'$ is a map of $\mathcal{O}_U$-modules with
$j_{U!}\mathcal{G} \to j_{U!}\mathcal{G}'$ injective,
then $j_U^*j_{U!}\mathcal{G} \to j_U^*j_{U!}\mathcal{G}'$ is injective
(restriction is exact), hence
$\mathcal{G} \to j_U^*j_{U!}\mathcal{G}'$ is injective, hence
$\mathcal{G} \to \mathcal{G}'$ is injective.
We conclude that $j_{U!}$ reflects injections.
\medskip\noindent
Let $a : \mathcal{G} \to \mathcal{G}'$ be a map of $\mathcal{O}_U$-modules
such that $j_{U!}\mathcal{G} \to j_{U!}\mathcal{G}'$ is surjective.
Let $\mathcal{H}$ be the cokernel of $a$.
Then $j_{U!}\mathcal{H} = 0$ as $j_{U!}$ is exact.
By the above the map $\mathcal{H} \to j^*_U j_{U!}\mathcal{H}$
is injective. Hence $\mathcal{H} = 0$ as desired.
\end{proof}
```

## Comments (2)

## Add a comment on tag `0E8G`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are also 2 comments on Section 18.19: Modules on Sites.