18.19 Localization of ringed sites
Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). We explain the counterparts of the results in Sites, Section 7.25 in this setting.
Denote \mathcal{O}_ U = j_ U^{-1}\mathcal{O} the restriction of \mathcal{O} to the site \mathcal{C}/U. It is described by the simple rule \mathcal{O}_ U(V/U) = \mathcal{O}(V). With this notation the localization morphism j_ U becomes a morphism of ringed topoi
(j_ U, j_ U^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U), \mathcal{O}_ U) \longrightarrow (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})
namely, we take j_ U^\sharp : j_ U^{-1}\mathcal{O} \to \mathcal{O}_ U the identity map. Moreover, we obtain the following descriptions for pushforward and pullback of modules.
Definition 18.19.1. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}).
The ringed site (\mathcal{C}/U, \mathcal{O}_ U) is called the localization of the ringed site (\mathcal{C}, \mathcal{O}) at the object U.
The morphism of ringed topoi (j_ U, j_ U^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U), \mathcal{O}_ U) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) is called the localization morphism.
The functor j_{U*} : \textit{Mod}(\mathcal{O}_ U) \to \textit{Mod}(\mathcal{O}) is called the direct image functor.
For a sheaf of \mathcal{O}-modules \mathcal{F} on \mathcal{C} the sheaf j_ U^*\mathcal{F} is called the restriction of \mathcal{F} to \mathcal{C}/U. We will sometimes denote it by \mathcal{F}|_{\mathcal{C}/U} or even \mathcal{F}|_ U. It is described by the simple rule j_ U^*(\mathcal{F})(X/U) = \mathcal{F}(X).
The left adjoint j_{U!} : \textit{Mod}(\mathcal{O}_ U) \to \textit{Mod}(\mathcal{O}) of restriction is called extension by zero. It exists and is exact by Lemmas 18.19.2 and 18.19.3.
As in the topological case, see Sheaves, Section 6.31, the extension by zero j_{U!} functor is different from extension by the empty set j_{U!} defined on sheaves of sets. Here is the lemma defining extension by zero.
Lemma 18.19.2. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). The restriction functor j_ U^* : \textit{Mod}(\mathcal{O}) \to \textit{Mod}(\mathcal{O}_ U) has a left adjoint j_{U!} : \textit{Mod}(\mathcal{O}_ U) \to \textit{Mod}(\mathcal{O}). So
\mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O}_ U)}(\mathcal{G}, j_ U^*\mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}(j_{U!}\mathcal{G}, \mathcal{F})
for \mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\textit{Mod}(\mathcal{O})) and \mathcal{G} \in \mathop{\mathrm{Ob}}\nolimits (\textit{Mod}(\mathcal{O}_ U)). Moreover, the extension by zero j_{U!}\mathcal{G} of \mathcal{G} is the sheaf associated to the presheaf
V \longmapsto \bigoplus \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V \xrightarrow {\varphi } U)
with obvious restriction mappings and an obvious \mathcal{O}-module structure.
Proof.
The \mathcal{O}-module structure on the presheaf is defined as follows. If f \in \mathcal{O}(V) and s \in \mathcal{G}(V \xrightarrow {\varphi } U), then we define f \cdot s = fs where f \in \mathcal{O}_ U(\varphi : V \to U) = \mathcal{O}(V) (because \mathcal{O}_ U is the restriction of \mathcal{O} to \mathcal{C}/U).
Similarly, let \alpha : \mathcal{G} \to \mathcal{F}|_ U be a morphism of \mathcal{O}_ U-modules. In this case we can define a map from the presheaf of the lemma into \mathcal{F} by mapping
\bigoplus \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V \xrightarrow {\varphi } U) \longrightarrow \mathcal{F}(V)
by the rule that s \in \mathcal{G}(V \xrightarrow {\varphi } U) maps to \alpha (s) \in \mathcal{F}(V). It is clear that this is \mathcal{O}-linear, and hence induces a morphism of \mathcal{O}-modules \alpha ' : j_{U!}\mathcal{G} \to \mathcal{F} by the properties of sheafification of modules (Lemma 18.11.1).
Conversely, let \beta : j_{U!}\mathcal{G} \to \mathcal{F} by a map of \mathcal{O}-modules. Recall from Sites, Section 7.25 that there exists an extension by the empty set j^{Sh}_{U!} : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) on sheaves of sets which is left adjoint to j_ U^{-1}. Moreover, j^{Sh}_{U!}\mathcal{G} is the sheaf associated to the presheaf
V \longmapsto \coprod \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V \xrightarrow {\varphi } U)
Hence there is a natural map j^{Sh}_{U!}\mathcal{G} \to j_{U!}\mathcal{G} of sheaves of sets. Hence precomposing \beta by this map we get a map of sheaves of sets j^{Sh}_{U!}\mathcal{G} \to \mathcal{F} which by adjunction corresponds to a map of sheaves of sets \beta ' : \mathcal{G} \to \mathcal{F}|_ U. We claim that \beta ' is \mathcal{O}_ U-linear. Namely, suppose that \varphi : V \to U is an object of \mathcal{C}/U and that s, s' \in \mathcal{G}(\varphi : V \to U), and f \in \mathcal{O}(V) = \mathcal{O}_ U(\varphi : V \to U). Then by the discussion above we see that \beta '(s + s'), resp. \beta '(fs) in \mathcal{F}|_ U(\varphi : V \to U) correspond to \beta (s + s'), resp. \beta (fs) in \mathcal{F}(V). Since \beta is a homomorphism we conclude.
To conclude the proof of the lemma we have to show that the constructions \alpha \mapsto \alpha ' and \beta \mapsto \beta ' are mutually inverse. We omit the verifications.
\square
Note that we have in the situation of Definition 18.19.1 we have
18.19.2.1
\begin{equation} \label{sites-modules-equation-map-lower-shriek-OU-into-module} \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(j_{U!}\mathcal{O}_ U, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_ U, j_ U^*\mathcal{F}) = \mathcal{F}(U) \end{equation}
for every \mathcal{O}-module \mathcal{F}. Namely, the first equality holds by the adjointness of j_{U!} and j_ U^* and the second because \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_ U, j_ U^*\mathcal{F}) = j_ U^*\mathcal{F}(U/U) = \mathcal{F}|_ U(U/U) = \mathcal{F}(U).
Lemma 18.19.3. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). The functor j_{U!} : \textit{Mod}(\mathcal{O}_ U) \to \textit{Mod}(\mathcal{O}) is exact.
Proof.
Since j_{U!} is a left adjoint to j_ U^* we see that it is right exact (see Categories, Lemma 4.24.6 and Homology, Section 12.7). Hence it suffices to show that if \mathcal{G}_1 \to \mathcal{G}_2 is an injective map of \mathcal{O}_ U-modules, then j_{U!}\mathcal{G}_1 \to j_{U!}\mathcal{G}_2 is injective. The map on sections of presheaves over an object V (as in Lemma 18.19.2) is the map
\bigoplus \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}_1(V \xrightarrow {\varphi } U) \longrightarrow \bigoplus \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}_2(V \xrightarrow {\varphi } U)
which is injective by assumption. Since sheafification is exact by Lemma 18.11.2 we conclude j_{U!}\mathcal{G}_1 \to j_{U!}\mathcal{G}_2 is injective and we win.
\square
Lemma 18.19.4. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). A complex of \mathcal{O}_ U-modules \mathcal{G}_1 \to \mathcal{G}_2 \to \mathcal{G}_3 is exact if and only if j_{U!}\mathcal{G}_1 \to j_{U!}\mathcal{G}_2 \to j_{U!}\mathcal{G}_3 is exact as a sequence of \mathcal{O}-modules.
Proof.
We already know that j_{U!} is exact, see Lemma 18.19.3. Thus it suffices to show that j_{U!} : \textit{Mod}(\mathcal{O}_ U) \to \textit{Mod}(\mathcal{O}) reflects injections and surjections.
For every \mathcal{G} in \textit{Mod}(\mathcal{O}_ U) we have the unit \mathcal{G} \to j_ U^*j_{U!}\mathcal{G} of the adjunction. We claim this map is an injection of sheaves. Namely, looking at the construction of Lemma 18.19.2 we see that this map is the sheafification of the rule sending the object V/U of \mathcal{C}/U to the injective map
\mathcal{G}(V/U) \longrightarrow \bigoplus \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V \xrightarrow {\varphi } U)
given by the inclusion of the summand corresponding to the structure morphism V \to U. Since sheafification is exact the claim follows. Some details omitted.
If \mathcal{G} \to \mathcal{G}' is a map of \mathcal{O}_ U-modules with j_{U!}\mathcal{G} \to j_{U!}\mathcal{G}' injective, then j_ U^*j_{U!}\mathcal{G} \to j_ U^*j_{U!}\mathcal{G}' is injective (restriction is exact), hence \mathcal{G} \to j_ U^*j_{U!}\mathcal{G}' is injective, hence \mathcal{G} \to \mathcal{G}' is injective. We conclude that j_{U!} reflects injections.
Let a : \mathcal{G} \to \mathcal{G}' be a map of \mathcal{O}_ U-modules such that j_{U!}\mathcal{G} \to j_{U!}\mathcal{G}' is surjective. Let \mathcal{H} be the cokernel of a. Then j_{U!}\mathcal{H} = 0 as j_{U!} is exact. By the above the map \mathcal{H} \to j^*_ U j_{U!}\mathcal{H} is injective. Hence \mathcal{H} = 0 as desired.
\square
Lemma 18.19.5. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let f : V \to U be a morphism of \mathcal{C}. Then there exists a commutative diagram
\xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/V), \mathcal{O}_ V) \ar[rd]_{(j_ V, j_ V^\sharp )} \ar[rr]_{(j, j^\sharp )} & & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U), \mathcal{O}_ U) \ar[ld]^{(j_ U, j_ U^\sharp )} \\ & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) & }
of ringed topoi. Here (j, j^\sharp ) is the localization morphism associated to the object V/U of the ringed site (\mathcal{C}/V, \mathcal{O}_ V).
Proof.
The only thing to check is that j_ V^\sharp = j^\sharp \circ j^{-1}(j_ U^\sharp ), since everything else follows directly from Sites, Lemma 7.25.8 and Sites, Equation (7.25.8.1). We omit the verification of the equality.
\square
Lemma 18.19.8. Let \mathcal{C} be a site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). Assume that every X in \mathcal{C} has at most one morphism to U. Let \mathcal{F} be an abelian sheaf on \mathcal{C}/U. The canonical maps \mathcal{F} \to j_ U^{-1}j_{U!}\mathcal{F} and j_ U^{-1}j_{U*}\mathcal{F} \to \mathcal{F} are isomorphisms.
Proof.
This is a special case of Lemma 18.16.4 because the assumption on U is equivalent to the fully faithfulness of the localization functor \mathcal{C}/U \to \mathcal{C}.
\square
Comments (2)
Comment #2474 by Tanya Kaushal Srivastava on
Comment #2507 by Johan on