Lemma 18.19.2. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). The restriction functor j_ U^* : \textit{Mod}(\mathcal{O}) \to \textit{Mod}(\mathcal{O}_ U) has a left adjoint j_{U!} : \textit{Mod}(\mathcal{O}_ U) \to \textit{Mod}(\mathcal{O}). So
\mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O}_ U)}(\mathcal{G}, j_ U^*\mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}(j_{U!}\mathcal{G}, \mathcal{F})
for \mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\textit{Mod}(\mathcal{O})) and \mathcal{G} \in \mathop{\mathrm{Ob}}\nolimits (\textit{Mod}(\mathcal{O}_ U)). Moreover, the extension by zero j_{U!}\mathcal{G} of \mathcal{G} is the sheaf associated to the presheaf
V \longmapsto \bigoplus \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V \xrightarrow {\varphi } U)
with obvious restriction mappings and an obvious \mathcal{O}-module structure.
Proof.
The \mathcal{O}-module structure on the presheaf is defined as follows. If f \in \mathcal{O}(V) and s \in \mathcal{G}(V \xrightarrow {\varphi } U), then we define f \cdot s = fs where f \in \mathcal{O}_ U(\varphi : V \to U) = \mathcal{O}(V) (because \mathcal{O}_ U is the restriction of \mathcal{O} to \mathcal{C}/U).
Similarly, let \alpha : \mathcal{G} \to \mathcal{F}|_ U be a morphism of \mathcal{O}_ U-modules. In this case we can define a map from the presheaf of the lemma into \mathcal{F} by mapping
\bigoplus \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V \xrightarrow {\varphi } U) \longrightarrow \mathcal{F}(V)
by the rule that s \in \mathcal{G}(V \xrightarrow {\varphi } U) maps to \alpha (s) \in \mathcal{F}(V). It is clear that this is \mathcal{O}-linear, and hence induces a morphism of \mathcal{O}-modules \alpha ' : j_{U!}\mathcal{G} \to \mathcal{F} by the properties of sheafification of modules (Lemma 18.11.1).
Conversely, let \beta : j_{U!}\mathcal{G} \to \mathcal{F} by a map of \mathcal{O}-modules. Recall from Sites, Section 7.25 that there exists an extension by the empty set j^{Sh}_{U!} : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) on sheaves of sets which is left adjoint to j_ U^{-1}. Moreover, j^{Sh}_{U!}\mathcal{G} is the sheaf associated to the presheaf
V \longmapsto \coprod \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V \xrightarrow {\varphi } U)
Hence there is a natural map j^{Sh}_{U!}\mathcal{G} \to j_{U!}\mathcal{G} of sheaves of sets. Hence precomposing \beta by this map we get a map of sheaves of sets j^{Sh}_{U!}\mathcal{G} \to \mathcal{F} which by adjunction corresponds to a map of sheaves of sets \beta ' : \mathcal{G} \to \mathcal{F}|_ U. We claim that \beta ' is \mathcal{O}_ U-linear. Namely, suppose that \varphi : V \to U is an object of \mathcal{C}/U and that s, s' \in \mathcal{G}(\varphi : V \to U), and f \in \mathcal{O}(V) = \mathcal{O}_ U(\varphi : V \to U). Then by the discussion above we see that \beta '(s + s'), resp. \beta '(fs) in \mathcal{F}|_ U(\varphi : V \to U) correspond to \beta (s + s'), resp. \beta (fs) in \mathcal{F}(V). Since \beta is a homomorphism we conclude.
To conclude the proof of the lemma we have to show that the constructions \alpha \mapsto \alpha ' and \beta \mapsto \beta ' are mutually inverse. We omit the verifications.
\square
Comments (0)
There are also: