The Stacks project

Lemma 18.19.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. The restriction functor $j_ U^* : \textit{Mod}(\mathcal{O}) \to \textit{Mod}(\mathcal{O}_ U)$ has a left adjoint $j_{U!} : \textit{Mod}(\mathcal{O}_ U) \to \textit{Mod}(\mathcal{O})$. So

\[ \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O}_ U)}(\mathcal{G}, j_ U^*\mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}(j_{U!}\mathcal{G}, \mathcal{F}) \]

for $\mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\textit{Mod}(\mathcal{O}))$ and $\mathcal{G} \in \mathop{\mathrm{Ob}}\nolimits (\textit{Mod}(\mathcal{O}_ U))$. Moreover, the extension by zero $j_{U!}\mathcal{G}$ of $\mathcal{G}$ is the sheaf associated to the presheaf

\[ V \longmapsto \bigoplus \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V \xrightarrow {\varphi } U) \]

with obvious restriction mappings and an obvious $\mathcal{O}$-module structure.

Proof. The $\mathcal{O}$-module structure on the presheaf is defined as follows. If $f \in \mathcal{O}(V)$ and $s \in \mathcal{G}(V \xrightarrow {\varphi } U)$, then we define $f \cdot s = fs$ where $f \in \mathcal{O}_ U(\varphi : V \to U) = \mathcal{O}(V)$ (because $\mathcal{O}_ U$ is the restriction of $\mathcal{O}$ to $\mathcal{C}/U$).

Similarly, let $\alpha : \mathcal{G} \to \mathcal{F}|_ U$ be a morphism of $\mathcal{O}_ U$-modules. In this case we can define a map from the presheaf of the lemma into $\mathcal{F}$ by mapping

\[ \bigoplus \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V \xrightarrow {\varphi } U) \longrightarrow \mathcal{F}(V) \]

by the rule that $s \in \mathcal{G}(V \xrightarrow {\varphi } U)$ maps to $\alpha (s) \in \mathcal{F}(V)$. It is clear that this is $\mathcal{O}$-linear, and hence induces a morphism of $\mathcal{O}$-modules $\alpha ' : j_{U!}\mathcal{G} \to \mathcal{F}$ by the properties of sheafification of modules (Lemma 18.11.1).

Conversely, let $\beta : j_{U!}\mathcal{G} \to \mathcal{F}$ by a map of $\mathcal{O}$-modules. Recall from Sites, Section 7.25 that there exists an extension by the empty set $j^{Sh}_{U!} : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ on sheaves of sets which is left adjoint to $j_ U^{-1}$. Moreover, $j^{Sh}_{U!}\mathcal{G}$ is the sheaf associated to the presheaf

\[ V \longmapsto \coprod \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V \xrightarrow {\varphi } U) \]

Hence there is a natural map $j^{Sh}_{U!}\mathcal{G} \to j_{U!}\mathcal{G}$ of sheaves of sets. Hence precomposing $\beta $ by this map we get a map of sheaves of sets $j^{Sh}_{U!}\mathcal{G} \to \mathcal{F}$ which by adjunction corresponds to a map of sheaves of sets $\beta ' : \mathcal{G} \to \mathcal{F}|_ U$. We claim that $\beta '$ is $\mathcal{O}_ U$-linear. Namely, suppose that $\varphi : V \to U$ is an object of $\mathcal{C}/U$ and that $s, s' \in \mathcal{G}(\varphi : V \to U)$, and $f \in \mathcal{O}(V) = \mathcal{O}_ U(\varphi : V \to U)$. Then by the discussion above we see that $\beta '(s + s')$, resp. $\beta '(fs)$ in $\mathcal{F}|_ U(\varphi : V \to U)$ correspond to $\beta (s + s')$, resp. $\beta (fs)$ in $\mathcal{F}(V)$. Since $\beta $ is a homomorphism we conclude.

To conclude the proof of the lemma we have to show that the constructions $\alpha \mapsto \alpha '$ and $\beta \mapsto \beta '$ are mutually inverse. We omit the verifications. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 18.19: Localization of ringed sites

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03DI. Beware of the difference between the letter 'O' and the digit '0'.