Lemma 18.19.3. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). The functor j_{U!} : \textit{Mod}(\mathcal{O}_ U) \to \textit{Mod}(\mathcal{O}) is exact.
Proof. Since j_{U!} is a left adjoint to j_ U^* we see that it is right exact (see Categories, Lemma 4.24.6 and Homology, Section 12.7). Hence it suffices to show that if \mathcal{G}_1 \to \mathcal{G}_2 is an injective map of \mathcal{O}_ U-modules, then j_{U!}\mathcal{G}_1 \to j_{U!}\mathcal{G}_2 is injective. The map on sections of presheaves over an object V (as in Lemma 18.19.2) is the map
\bigoplus \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}_1(V \xrightarrow {\varphi } U) \longrightarrow \bigoplus \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}_2(V \xrightarrow {\varphi } U)
which is injective by assumption. Since sheafification is exact by Lemma 18.11.2 we conclude j_{U!}\mathcal{G}_1 \to j_{U!}\mathcal{G}_2 is injective and we win. \square
Comments (0)
There are also: