The Stacks project

7.25 Localization

Let $\mathcal{C}$ be a site. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. See Categories, Example 4.2.13 for the definition of the category $\mathcal{C}/U$ of objects over $U$. We turn $\mathcal{C}/U$ into a site by declaring a family of morphisms $\{ V_ j \to V\} $ of objects over $U$ to be a covering of $\mathcal{C}/U$ if and only if it is a covering in $\mathcal{C}$. Consider the forgetful functor

\[ j_ U : \mathcal{C}/U \longrightarrow \mathcal{C}. \]

This is clearly cocontinuous and continuous. Hence by the results of the previous sections we obtain a morphism of topoi

\[ j_ U : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \longrightarrow \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \]

given by $j_ U^{-1}$ and $j_{U*}$, as well as a functor $j_{U!}$.

Definition 7.25.1. Let $\mathcal{C}$ be a site. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$.

  1. The site $\mathcal{C}/U$ is called the localization of the site $\mathcal{C}$ at the object $U$.

  2. The morphism of topoi $j_ U : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ is called the localization morphism.

  3. The functor $j_{U*}$ is called the direct image functor.

  4. For a sheaf $\mathcal{F}$ on $\mathcal{C}$ the sheaf $j_ U^{-1}\mathcal{F}$ is called the restriction of $\mathcal{F}$ to $\mathcal{C}/U$.

  5. For a sheaf $\mathcal{G}$ on $\mathcal{C}/U$ the sheaf $j_{U!}\mathcal{G}$ is called the extension of $\mathcal{G}$ by the empty set.

The restriction $j_ U^{-1}\mathcal{F}$ is the sheaf defined by the rule $j_ U^{-1}\mathcal{F}(X/U) = \mathcal{F}(X)$ as expected. The extension by the empty set also has a very easy description in this case; here it is.

Lemma 7.25.2. Let $\mathcal{C}$ be a site. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. Let $\mathcal{G}$ be a presheaf on $\mathcal{C}/U$. Then $j_{U!}(\mathcal{G}^\# )$ is the sheaf associated to the presheaf

\[ V \longmapsto \coprod \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V \xrightarrow {\varphi } U) \]

with obvious restriction mappings.

Proof. By Lemma 7.21.5 we have $j_{U!}(\mathcal{G}^\# ) = ((j_ U)_ p\mathcal{G}^\# )^\# $. By Lemma 7.13.4 this is equal to $((j_ U)_ p\mathcal{G})^\# $. Hence it suffices to prove that $(j_ U)_ p$ is given by the formula above for any presheaf $\mathcal{G}$ on $\mathcal{C}/U$. OK, and by the definition in Section 7.5 we have

\[ (j_ U)_ p\mathcal{G}(V) = \mathop{\mathrm{colim}}\nolimits _{(W/U, V \to W)} \mathcal{G}(W) \]

Now it is clear that the category of pairs $(W/U, V \to W)$ has an object $O_\varphi = (\varphi : V \to U, \text{id} : V \to V)$ for every $\varphi : V \to U$, and moreover for any object there is a unique morphism from one of the $O_\varphi $ into it. The result follows. $\square$

Lemma 7.25.3. Let $\mathcal{C}$ be a site. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. Let $X/U$ be an object of $\mathcal{C}/U$. Then we have $j_{U!}(h_{X/U}^\# ) = h_ X^\# $.

Proof. Denote $p : X \to U$ the structure morphism of $X$. By Lemma 7.25.2 we see $j_{U!}(h_{X/U}^\# )$ is the sheaf associated to the presheaf

\[ V \longmapsto \coprod \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \{ \psi : V \to X \mid p \circ \psi = \varphi \} \]

This is clearly the same thing as $\mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, X)$. Hence the lemma follows. $\square$

We have $j_{U!}(*) = h_ U^\# $ by either of the two lemmas above. Hence for every sheaf $\mathcal{G}$ over $\mathcal{C}/U$ there is a canonical map of sheaves $j_{U!}\mathcal{G} \to h_ U^\# $. This characterizes sheaves in the essential image of $j_{U!}$.

Lemma 7.25.4. Let $\mathcal{C}$ be a site. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. The functor $j_{U!}$ gives an equivalence of categories

\[ \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \longrightarrow \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# \]

Proof. Let us denote objects of $\mathcal{C}/U$ as pairs $(X, a)$ where $X$ is an object of $\mathcal{C}$ and $a : X \to U$ is a morphism of $\mathcal{C}$. Similarly, objects of $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# $ are pairs $(\mathcal{F}, \varphi )$. The functor $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# $ sends $\mathcal{G}$ to the pair $(j_{U!}\mathcal{G}, \gamma )$ where $\gamma $ is the composition of $j_{U!}\mathcal{G} \to j_{U!}*$ with the identification $j_{U!}* = h_ U^\# $.

Let us construct a functor from $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# $ to $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U)$. Suppose that $(\mathcal{F}, \varphi )$ is given. For an object $(X, a)$ of $\mathcal{C}/U$ we consider the set $\mathcal{F}_\varphi (X, a)$ of elements $s \in \mathcal{F}(X)$ which under $\varphi $ map to the image of $a \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(X, U) = h_ U(X)$ in $h_ U^\# (X)$. It is easy to see that $(X, a) \mapsto \mathcal{F}_\varphi (X, a)$ is a sheaf on $\mathcal{C}/U$. Clearly, the rule $(\mathcal{F}, \varphi ) \mapsto \mathcal{F}_\varphi $ defines a functor $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U)$.

Consider also the functor $\textit{PSh}(\mathcal{C})/h_ U \to \textit{PSh}(\mathcal{C}/U)$, $(\mathcal{F}, \varphi ) \mapsto \mathcal{F}_\varphi $ where $\mathcal{F}_\varphi (X, a)$ is defined as the set of elements of $\mathcal{F}(X)$ mapping to $a \in h_ U(X)$. We claim that the diagram

\[ \xymatrix{ \textit{PSh}(\mathcal{C})/h_ U \ar[r] \ar[d] & \textit{PSh}(\mathcal{C}/U) \ar[d] \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# \ar[r] & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) } \]

commutes, where the vertical arrows are given by sheafification. To see this1, it suffices to prove that the construction commutes with the functor $\mathcal{F} \mapsto \mathcal{F}^+$ of Lemmas 7.10.3 and 7.10.4 and Theorem 7.10.10. Commutation with $\mathcal{F} \mapsto \mathcal{F}^+$ follows from the fact that given $(X, a)$ the categories of coverings of $(X, a)$ in $\mathcal{C}/U$ and coverings of $X$ in $\mathcal{C}$ are canonically identified.

Next, let $\textit{PSh}(\mathcal{C}/U) \to \textit{PSh}(\mathcal{C})/h_ U$ send $\mathcal{G}$ to the pair $(j_{U!}^{PSh}\mathcal{G}, \gamma )$ where $j_{U!}^{PSh}\mathcal{G}$ the presheaf defined by the formula in Lemma 7.25.2 and $\gamma $ is the composition of $j_{U!}^{PSh}\mathcal{G} \to j_{U!}*$ with the identification $j_{U!}^{PSh}* = h_ U$ (obvious from the formula). Then it is immediately clear that the diagram

\[ \xymatrix{ \textit{PSh}(\mathcal{C}/U) \ar[r] \ar[d] & \textit{PSh}(\mathcal{C})/h_ U \ar[d] \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \ar[r] & \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# } \]

commutes, where the vertical arrows are sheafification. Putting everything together it suffices to show there are functorial isomorphisms $(j_{U!}^{PSh}\mathcal{G})_\gamma = \mathcal{G}$ for $\mathcal{G}$ in $\textit{PSh}(\mathcal{C}/U)$ and $j_{U!}^{PSh}\mathcal{F}_\varphi = \mathcal{F}$ for $(\mathcal{F}, \varphi )$ in $\textit{PSh}(\mathcal{C})/h_ U$. The value of the presheaf $(j_{U!}^{PSh}\mathcal{G})_\gamma $ on $(X, a)$ is the fibre of the map

\[ \coprod \nolimits _{a' : X \to U} \mathcal{G}(X, a') \to \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(X, U) \]

over $a$ which is $\mathcal{G}(X, a)$. This proves the first equality. The value of the presheaf $j_{U!}^{PSh}\mathcal{F}_\varphi $ is on $X$ is

\[ \coprod \nolimits _{a : X \to U} \mathcal{F}_\varphi (X, a) = \mathcal{F}(X) \]

because given a set map $S \to S'$ the set $S$ is the disjoint union of its fibres. $\square$

Lemma 7.25.4 says the functor $j_{U!}$ is the composition

\[ \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \rightarrow \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# \rightarrow \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \]

where the first arrow is an equivalence.

Lemma 7.25.5. Let $\mathcal{C}$ be a site. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. The functor $j_{U!}$ commutes with fibre products and equalizers (and more generally finite connected limits). In particular, if $\mathcal{F} \subset \mathcal{F}'$ in $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U)$, then $j_{U!}\mathcal{F} \subset j_{U!}\mathcal{F}'$.

Proof. Via Lemma 7.25.4 and the fact that an equivalence of categories commutes with all limits, this reduces to the fact that the functor $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# \rightarrow \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ commutes with fibre products and equalizers. Alternatively, one can prove this directly using the description of $j_{U!}$ in Lemma 7.25.2 using that sheafification is exact. (Also, in case $\mathcal{C}$ has fibre products and equalizers, the result follows from Lemma 7.21.6.) $\square$

Lemma 7.25.6. Let $\mathcal{C}$ be a site. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. The functor $j_{U!}$ reflects injections and surjections.

Proof. We have to show $j_{U!}$ reflects monomorphisms and epimorphisms, see Lemma 7.11.2. Via Lemma 7.25.4 this reduces to the fact that the functor $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ reflects monomorphisms and epimorphisms. $\square$

Lemma 7.25.7. Let $\mathcal{C}$ be a site. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. For any sheaf $\mathcal{F}$ on $\mathcal{C}$ we have $j_{U!}j_ U^{-1}\mathcal{F} = \mathcal{F} \times h_ U^\# $.

Proof. This is clear from the description of $j_{U!}$ in Lemma 7.25.2. $\square$

Lemma 7.25.8. Let $\mathcal{C}$ be a site. Let $f : V \to U$ be a morphism of $\mathcal{C}$. Then there exists a commutative diagram

\[ \xymatrix{ \mathcal{C}/V \ar[rd]_{j_ V} \ar[rr]_ j & & \mathcal{C}/U \ar[ld]^{j_ U} \\ & \mathcal{C} & } \]

of continuous and cocontinuous functors. The functor $j : \mathcal{C}/V \to \mathcal{C}/U$, $(a : W \to V) \mapsto (f \circ a : W \to U)$ is identified with the functor $j_{V/U} : (\mathcal{C}/U)/(V/U) \to \mathcal{C}/U$ via the identification $(\mathcal{C}/U)/(V/U) = \mathcal{C}/V$. Moreover we have $j_{V!} = j_{U!} \circ j_!$, $j_ V^{-1} = j^{-1} \circ j_ U^{-1}$, and $j_{V*} = j_{U*} \circ j_*$.

Proof. The commutativity of the diagram is immediate. The agreement of $j$ with $j_{V/U}$ follows from the definitions. By Lemma 7.21.2 we see that the following diagram of morphisms of topoi

7.25.8.1
\begin{equation} \label{sites-equation-relocalize} \vcenter { \xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/V) \ar[rd]_{j_ V} \ar[rr]_ j & & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \ar[ld]^{j_ U} \\ & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) & } } \end{equation}

is commutative. This proves that $j_ V^{-1} = j^{-1} \circ j_ U^{-1}$ and $j_{V*} = j_{U*} \circ j_*$. The equality $j_{V!} = j_{U!} \circ j_!$ follows formally from adjointness properties. $\square$

Lemma 7.25.9. Notation $\mathcal{C}$, $f : V \to U$, $j_ U$, $j_ V$, and $j$ as in Lemma 7.25.8. Via the identifications $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/V) = \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ V^\# $ and $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) = \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# $ of Lemma 7.25.4 we have

  1. the functor $j^{-1}$ has the following description

    \[ j^{-1}(\mathcal{H} \xrightarrow {\varphi } h_ U^\# ) = (\mathcal{H} \times _{\varphi , h_ U^\# , f} h_ V^\# \to h_ V^\# ). \]
  2. the functor $j_!$ has the following description

    \[ j_!(\mathcal{H} \xrightarrow {\varphi } h_ V^\# ) = (\mathcal{H} \xrightarrow {h_ f \circ \varphi } h_ U^\# ) \]

Proof. Proof of (2). Recall that the identification $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/V) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ V^\# $ sends $\mathcal{G}$ to $j_{V!}\mathcal{G} \to j_{V!}(*) = h_ V^\# $ and similarly for $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# $. Thus $j_!\mathcal{G}$ is mapped to $j_{U!}(j_!\mathcal{G}) \to j_{U!}(*) = h_ U^\# $ and (2) follows because $j_{U!}j_! = j_{V!}$ by Lemma 7.25.8.

The reader can now prove (1) by using that $j^{-1}$ is the right adjoint to $j_!$ and using that the rule in (1) is the right adjoint to the rule in (2). Here is a direct proof. Suppose that $\varphi : \mathcal{H} \to h_ U^\# $ is an object of $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# $. By the proof of Lemma 7.25.4 this corresponds to the sheaf $\mathcal{H}_\varphi $ on $\mathcal{C}/U$ defined by the rule

\[ (a : W \to U) \longmapsto \{ s \in \mathcal{H}(W) \mid \varphi (s) = a\} \]

on $\mathcal{C}/U$. The pullback $j^{-1}\mathcal{H}_\varphi $ to $\mathcal{C}/V$ is given by the rule

\[ (a : W \to V) \longmapsto \{ s \in \mathcal{H}(W) \mid \varphi (s) = f \circ a\} \]

by the description of $j^{-1} = j_{U/V}^{-1}$ as the restriction of $\mathcal{H}_\varphi $ to $\mathcal{C}/V$. On the other hand, applying the rule to the object

\[ \xymatrix{ \mathcal{H}' = \mathcal{H} \times _{\varphi , h_ U^\# , f} h_ V^\# \ar[rr]^-{\varphi '} & & h_ V^\# } \]

of $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ V^\# $ we get $\mathcal{H}'_{\varphi '}$ given by

\begin{align*} (a : W \to V) \longmapsto & \{ s' \in \mathcal{H}'(W) \mid \varphi '(s') = a\} \\ = & \{ (s, a') \in \mathcal{H}(W) \times h_ V^\# (W) \mid a' = a \text{ and } \varphi (s) = f \circ a'\} \end{align*}

which is exactly the same rule as the one describing $j^{-1}\mathcal{H}_\varphi $ above. $\square$

Remark 7.25.10. Localization and presheaves. Let $\mathcal{C}$ be a category. Let $U$ be an object of $\mathcal{C}$. Strictly speaking the functors $j_ U^{-1}$, $j_{U*}$ and $j_{U!}$ have not been defined for presheaves. But of course, we can think of a presheaf as a sheaf for the chaotic topology on $\mathcal{C}$ (see Example 7.6.6). Hence we also obtain a functor

\[ j_ U^{-1} : \textit{PSh}(\mathcal{C}) \longrightarrow \textit{PSh}(\mathcal{C}/U) \]

and functors

\[ j_{U*}, j_{U!} : \textit{PSh}(\mathcal{C}/U) \longrightarrow \textit{PSh}(\mathcal{C}) \]

which are right, left adjoint to $j_ U^{-1}$. By Lemma 7.25.2 we see that $j_{U!}\mathcal{G}$ is the presheaf

\[ V \longmapsto \coprod \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \mathcal{G}(V \xrightarrow {\varphi } U) \]

In addition the functor $j_{U!}$ commutes with fibre products and equalizers.

Remark 7.25.11. Let $\mathcal{C}$ be a site. Let $U \to V$ be a morphism of $\mathcal{C}$. The cocontinuous functors $\mathcal{C}/U \to \mathcal{C}$ and $j : \mathcal{C}/U \to \mathcal{C}/V$ (Lemma 7.25.8) satisfy property $P$ of Remark 7.20.5. For example, if we have objects $(X/U)$, $(W/V)$, a morphism $g : j(X/U) \to (W/V)$, and a covering $\{ f_ i : (W_ i/V) \to (W/V)\} $ then $(X \times _ W W_ i/U)$ is an avatar of $(X/U) \times _{g, (W/V), f_ i} (W_ i/V)$ and the family $\{ (X \times _ W W_ i/U) \to (X/U)\} $ is a covering of $\mathcal{C}/U$.

[1] An alternative is to describe $\mathcal{F}_\varphi $ by the cartesian diagram
\[ \vcenter { \xymatrix{ \mathcal{F}_\varphi \ar[r] \ar[d] & {*} \ar[d] \\ \mathcal{F}|_{\mathcal{C}/U} \ar[r] & h_ U|_{\mathcal{C}/U} } } \quad \text{for presheaves and}\quad \vcenter { \xymatrix{ \mathcal{F}_\varphi \ar[r] \ar[d] & {*} \ar[d] \\ \mathcal{F}|_{\mathcal{C}/U} \ar[r] & h_ U^\# |_{\mathcal{C}/U} } } \]
for sheaves and use that restriction to $\mathcal{C}/U$ commutes with sheafification.

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00XZ. Beware of the difference between the letter 'O' and the digit '0'.