Lemma 7.10.4. The association $\mathcal{F} \mapsto (\mathcal{F} \to \mathcal{F}^+)$ is a functor.
Proof. Instead of proving this we state exactly what needs to be proven. Let $\mathcal{F} \to \mathcal{G}$ be a map of presheaves. Prove the commutativity of:
\[ \xymatrix{ \mathcal{F} \ar[r] \ar[d] & \mathcal{F}^{+} \ar[d] \\ \mathcal{G} \ar[r] & \mathcal{G}^{+} } \]
$\square$
Comments (2)
Comment #8569 by Alejandro González Nevado on
Comment #9148 by Stacks project on
There are also: