Lemma 7.10.3. The constructions above define a presheaf \mathcal{F}^+ together with a canonical map of presheaves \mathcal{F} \to \mathcal{F}^+.
Proof. All we have to do is to show that given morphisms W \to V \to U the composition \mathcal{F}^+(U) \to \mathcal{F}^+(V) \to \mathcal{F}^+(W) equals the map \mathcal{F}^+(U) \to \mathcal{F}^+(W). This can be shown directly by verifying that, given a covering \{ U_ i \to U\} and s = (s_ i) \in H^0(\{ U_ i \to U\} , \mathcal{F}), we have canonically W \times _ U U_ i \cong W \times _ V (V \times _ U U_ i), and s_ i|_{W \times _ U U_ i} corresponds to (s_ i|_{V \times _ U U_ i})|_{W \times _ V (V \times _ U U_ i)} via this isomorphism. \square
Comments (2)
Comment #8568 by Alejandro González Nevado on
Comment #9147 by Stacks project on
There are also: