Lemma 7.25.6. Let \mathcal{C} be a site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). The functor j_{U!} reflects injections and surjections.
Proof. We have to show j_{U!} reflects monomorphisms and epimorphisms, see Lemma 7.11.2. Via Lemma 7.25.4 this reduces to the fact that the functor \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) reflects monomorphisms and epimorphisms. \square
Comments (0)