Remark 7.20.5. Let $u : \mathcal{C} \to \mathcal{D}$ be a functor between categories. Given morphisms $g : u(U) \to V$ and $f : W \to V$ in $\mathcal{D}$ we can consider the functor

$\mathcal{C}^{opp} \longrightarrow \textit{Sets},\quad T \longmapsto \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(T, U) \times _{\mathop{\mathrm{Mor}}\nolimits _\mathcal {D}(u(T), V)} \mathop{\mathrm{Mor}}\nolimits _\mathcal {D}(u(T), W)$

If this functor is representable, denote $U \times _{g, V, f} W$ the corresponding object of $\mathcal{C}$. Assume that $\mathcal{C}$ and $\mathcal{D}$ are sites. Consider the property $P$: for every covering $\{ f_ j : V_ j \to V\}$ of $\mathcal{D}$ and any morphism $g : u(U) \to V$ we have

1. $U \times _{g, V, f_ i} V_ i$ exists for all $i$, and

2. $\{ U \times _{g, V, f_ i} V_ i \to U\}$ is a covering of $\mathcal{C}$.

Please note the similarity with the definition of continuous functors. If $u$ has $P$ then $u$ is cocontinuous (details omitted). Many of the cocontinuous functors we will encounter satisfy $P$.

There are also:

• 5 comment(s) on Section 7.20: Cocontinuous functors

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).