Lemma 7.25.3. Let \mathcal{C} be a site. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). Let X/U be an object of \mathcal{C}/U. Then we have j_{U!}(h_{X/U}^\# ) = h_ X^\# .
Proof. Denote p : X \to U the structure morphism of X. By Lemma 7.25.2 we see j_{U!}(h_{X/U}^\# ) is the sheaf associated to the presheaf
V \longmapsto \coprod \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U)} \{ \psi : V \to X \mid p \circ \psi = \varphi \}
This is clearly the same thing as \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, X). Hence the lemma follows. \square
Comments (0)