Proof.
By the Yoneda lemma (Categories, Lemma 4.3.5) the sheaf \mathcal{G}_ V corresponding to V \in E is defined up to unique isomorphism by the formula f^{-1}\mathcal{F}(V) = \mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{C})}(\mathcal{G}_ V, \mathcal{F}). Recall that f^{-1}\mathcal{F}(V) = \mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{D})}(h_ V^\# , f^{-1}\mathcal{F}). Denote i_ V : h_ V^\# \to f^{-1}\mathcal{G}_ V the map corresponding to \text{id} in \mathop{\mathrm{Mor}}\nolimits (\mathcal{G}_ V, \mathcal{G}_ V). Functoriality in (1) implies that the bijection is given by
\mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{C})}(\mathcal{G}_ V, \mathcal{F}) \to \mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{D})}(h_ V^\# , f^{-1}\mathcal{F}),\quad \varphi \mapsto f^{-1}\varphi \circ i_ V
For any V_1, V_2 \in E there is a canonical map
\mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{D})}(h^\# _{V_2}, h^\# _{V_1}) \to \mathop{\mathrm{Hom}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{C})}(\mathcal{G}_{V_2}, \mathcal{G}_{V_1}),\quad \varphi \mapsto f_!(\varphi )
which is characterized by f^{-1}(f_!(\varphi )) \circ i_{V_2} = i_{V_1} \circ \varphi . Note that \varphi \mapsto f_!(\varphi ) is compatible with composition; this can be seen directly from the characterization. Hence h_ V^\# \mapsto \mathcal{G}_ V and \varphi \mapsto f_!\varphi is a functor from the full subcategory of \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) whose objects are the h_ V^\# .
Let J be a set and let J \to E, j \mapsto V_ j be a map. Then we have a functorial bijection
\mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{C})}(\coprod \mathcal{G}_{V_ j}, \mathcal{F}) \longrightarrow \mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{D})}(\coprod h_{V_ j}^\# , f^{-1}\mathcal{F})
using the product of the bijections above. Hence we can extend the functor f_! to the full subcategory of \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) whose objects are coproducts of h_ V^\# with V \in E.
Given an arbitrary sheaf \mathcal{H} on \mathcal{D} we choose a coequalizer diagram
\xymatrix{ \mathcal{H}_1 \ar@<1ex>[r] \ar@<-1ex>[r] & \mathcal{H}_0 \ar[r] & \mathcal{H} }
where \mathcal{H}_ i = \coprod h_{V_{i, j}}^\# is a coproduct with V_{i, j} \in E. This is possible by assumption (2), see Lemma 7.12.5 (for those worried about set theoretical issues, note that the construction given in Lemma 7.12.5 is canonical). Define f_!(\mathcal{H}) to be the sheaf on \mathcal{C} which makes
\xymatrix{ f_!\mathcal{H}_1 \ar@<1ex>[r] \ar@<-1ex>[r] & f_!\mathcal{H}_0 \ar[r] & f_!\mathcal{H} }
a coequalizer diagram. Then
\begin{align*} \mathop{\mathrm{Mor}}\nolimits (f_!\mathcal{H}, \mathcal{F}) & = \text{Equalizer}( \xymatrix{ \mathop{\mathrm{Mor}}\nolimits (f_!\mathcal{H}_0, \mathcal{F}) \ar@<1ex>[r] \ar@<-1ex>[r] & \mathop{\mathrm{Mor}}\nolimits (f_!\mathcal{H}_1, \mathcal{F}) } ) \\ & = \text{Equalizer}( \xymatrix{ \mathop{\mathrm{Mor}}\nolimits (\mathcal{H}_0, f^{-1}\mathcal{F}) \ar@<1ex>[r] \ar@<-1ex>[r] & \mathop{\mathrm{Mor}}\nolimits (\mathcal{H}_1, f^{-1}\mathcal{F}) } ) \\ & = \mathop{\mathrm{Hom}}\nolimits (\mathcal{H}, f^{-1}\mathcal{F}) \end{align*}
Hence we see that we can extend f_! to the whole category of sheaves on \mathcal{D}.
\square
Comments (3)
Comment #3071 by Dario Weißmann on
Comment #3073 by Dario Weißmann on
Comment #3172 by Johan on