Lemma 25.21.15. Let $f : X \to Y$ and $g : Y \to Z$ be morphisms of schemes. If $g \circ f$ is quasi-compact and $g$ is quasi-separated then $f$ is quasi-compact.

**Proof.**
This is true because $f$ equals the composition $(1, f) : X \to X \times _ Z Y \to Y$. The first map is quasi-compact by Lemma 25.21.12 because it is a section of the quasi-separated morphism $X \times _ Z Y \to X$ (a base change of $g$, see Lemma 25.21.13). The second map is quasi-compact as it is the base change of $g \circ f$, see Lemma 25.19.3. And compositions of quasi-compact morphisms are quasi-compact, see Lemma 25.19.4.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #2800 by Kat Christianson on

Comment #2903 by Johan on

There are also: