Lemma 35.37.2. Let $S$ be a scheme. Let $\{ X_ i \to S\} _{i\in I}$ be an fpqc covering, see Topologies, Definition 34.9.1. Let $(V_ i/X_ i, \varphi _{ij})$ be a descent datum relative to $\{ X_ i \to S\} $. If each morphism $V_ i \to X_ i$ is a closed immersion, then the descent datum is effective.
Proof. This is true because a closed immersion is an affine morphism (Morphisms, Lemma 29.11.9), and hence Lemma 35.37.1 applies. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)