Lemma 5.21.3. Let $X$ be a topological space. Let $U \subset X$ be an open. Let $T \subset U$ be a subset. If $T$ is nowhere dense in $U$, then $T$ is nowhere dense in $X$.

**Proof.**
Assume $T$ is nowhere dense in $U$. Suppose that $x \in X$ is an interior point of the closure $\overline{T}$ of $T$ in $X$. Say $x \in V \subset \overline{T}$ with $V \subset X$ open in $X$. Note that $\overline{T} \cap U$ is the closure of $T$ in $U$. Hence the interior of $\overline{T} \cap U$ being empty implies $V \cap U = \emptyset $. Thus $x$ cannot be in the closure of $U$, a fortiori cannot be in the closure of $T$, a contradiction.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)