The Stacks project

Lemma 114.15.7. Let $S$ be a scheme. Let $X$ be a very reasonable algebraic space over $S$. There exists a set of schemes $U_ i$ and morphisms $U_ i \to X$ such that

  1. each $U_ i$ is a quasi-compact scheme,

  2. each $U_ i \to X$ is étale,

  3. both projections $U_ i \times _ X U_ i \to U_ i$ are quasi-compact, and

  4. the morphism $\coprod U_ i \to X$ is surjective (and étale).

Proof. Decent Spaces, Definition 67.6.1 says that there exist $U_ i \to X$ such that (2), (3) and (4) hold. Fix $i$, and set $R_ i = U_ i \times _ X U_ i$, and denote $s, t : R_ i \to U_ i$ the projections. For any affine open $W \subset U_ i$ the open $W' = t(s^{-1}(W)) \subset U_ i$ is a quasi-compact $R_ i$-invariant open (see Groupoids, Lemma 39.19.2). Hence $W'$ is a quasi-compact scheme, $W' \to X$ is étale, and $W' \times _ X W' = s^{-1}(W') = t^{-1}(W')$ so both projections $W' \times _ X W' \to W'$ are quasi-compact. This means the family of $W' \to X$, where $W \subset U_ i$ runs through the members of affine open coverings of the $U_ i$ gives what we want. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03K7. Beware of the difference between the letter 'O' and the digit '0'.