Lemma 64.6.3. Morphisms between objects in the derived category.

1. Let $I^\bullet \in \text{Comp}^+(\mathcal{A})$ with $I^ n$ injective for all $n \in \mathbf{Z}$. Then

$\mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{A})}(K^\bullet , I^\bullet ) = \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(K^\bullet , I^\bullet ).$
2. Let $P^\bullet \in \text{Comp}^-(\mathcal{A})$ with $P^ n$ is projective for all $n \in \mathbf{Z}$. Then

$\mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{A})}(P^\bullet , K^\bullet ) = \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(P^\bullet , K^\bullet ).$
3. If $\mathcal{A}$ has enough injectives and $\mathcal{I} \subset \mathcal{A}$ is the additive subcategory of injectives, then $D^+(\mathcal{A})\cong K^+(\mathcal{I})$ (as triangulated categories).

4. If $\mathcal{A}$ has enough projectives and $\mathcal{P} \subset \mathcal{A}$ is the additive subcategory of projectives, then $D^-(\mathcal{A}) \cong K^-(\mathcal{P}).$

Proof. Omitted. $\square$

There are also:

• 6 comment(s) on Section 64.6: Derived categories

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).