Lemma 63.6.3. Morphisms between objects in the derived category.

Let $I^\bullet \in \text{Comp}^+(\mathcal{A})$ with $I^ n$ injective for all $n \in \mathbf{Z}$. Then

\[ \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{A})}(K^\bullet , I^\bullet ) = \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(K^\bullet , I^\bullet ). \]Let $P^\bullet \in \text{Comp}^-(\mathcal{A})$ with $P^ n$ is projective for all $n \in \mathbf{Z}$. Then

\[ \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{A})}(P^\bullet , K^\bullet ) = \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(P^\bullet , K^\bullet ). \]If $\mathcal{A}$ has enough injectives and $\mathcal{I} \subset \mathcal{A}$ is the additive subcategory of injectives, then $ D^+(\mathcal{A})\cong K^+(\mathcal{I}) $ (as triangulated categories).

If $\mathcal{A}$ has enough projectives and $\mathcal{P} \subset \mathcal{A}$ is the additive subcategory of projectives, then $ D^-(\mathcal{A}) \cong K^-(\mathcal{P}). $

## Comments (0)

There are also: