Definition 63.6.4. Let $F: \mathcal{A} \to \mathcal{B}$ be a left exact functor and assume that $\mathcal{A}$ has enough injectives. We define the total right derived functor of $F$ as the functor $RF: D^+(\mathcal{A}) \to D^+(\mathcal{B})$ fitting into the diagram

$\xymatrix{ D^+(\mathcal{A}) \ar[r]^{RF} & D^+(\mathcal{B}) \\ K^+(\mathcal I) \ar[u] \ar[r]^ F & K^+(\mathcal{B}). \ar[u] }$

This is possible since the left vertical arrow is invertible by the previous lemma. Similarly, let $G: \mathcal{A} \to \mathcal{B}$ be a right exact functor and assume that $\mathcal{A}$ has enough projectives. We define the total left derived functor of $G$ as the functor $LG: D^-(\mathcal{A}) \to D^-(\mathcal{B})$ fitting into the diagram

$\xymatrix{ D^-(\mathcal{A}) \ar[r]^{LG} & D^-(\mathcal{B}) \\ K^-(\mathcal{P}) \ar[u] \ar[r]^ G & K^-(\mathcal{B}). \ar[u] }$

This is possible since the left vertical arrow is invertible by the previous lemma.

Comment #3411 by Dongryul Kim on

Typo: the second derived functor should be a left derived functor

There are also:

• 4 comment(s) on Section 63.6: Derived categories

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).