Lemma 64.15.9. Let P be a \Lambda [\Gamma ]-module, finite projective as \Lambda [G]-module. Then the coinvariants P_ G = \Lambda \otimes _{\Lambda [G]} P form a finite projective \Lambda -module, endowed with an action of \Gamma /G = \mathbf{N}. Moreover, we have
\text{Tr}_\Lambda (1; P_ G) = \sum \nolimits '_{\gamma \mapsto 1} \text{Tr}_\Lambda ^{Z_\gamma }(\gamma , P)
where \sum _{\gamma \mapsto 1}' means taking the sum over the G-conjugacy classes in \Gamma .
Sketch of proof.
We first prove this after multiplying by \# G.
\# G\cdot \text{Tr}_\Lambda (1; P_ G) = \text{Tr}_\Lambda (\sum \nolimits _{\gamma \mapsto 1} \gamma , P_ G) = \text{Tr}_\Lambda (\sum \nolimits _{\gamma \mapsto 1} \gamma , P)
where the second equality follows by considering the commutative triangle
\xymatrix{ P^ G \ar[rd]_ a & & P_ G \ar[ll]^ c \\ & P \ar[ur]_ b }
where a is the canonical inclusion, b the canonical surjection and c = \sum _{\gamma \mapsto 1} \gamma . Then we have
(\sum \nolimits _{\gamma \mapsto 1} \gamma ) |_ P = a \circ c \circ b \quad \text{and}\quad (\sum \nolimits _{\gamma \mapsto 1} \gamma ) |_{P_ G} = b \circ a \circ c
hence they have the same trace. We then have
\# G\cdot \text{Tr}_\Lambda (1; P_ G) = {\sum _{\gamma \mapsto 1}}' \frac{\# G}{\# Z_\gamma }\text{Tr}_\Lambda (\gamma , P) = \# G{\sum _{\gamma \mapsto 1}}' \text{Tr}_\Lambda ^{Z_\gamma }(\gamma , P).
To finish the proof, reduce to case \Lambda torsion-free by some universality argument. See [SGA4.5] for details.
\square
Comments (2)
Comment #3622 by Owen B on
Comment #3725 by Johan on