The Stacks project

Definition 63.18.1. Let $X$ be a Noetherian scheme. A $\mathbf{Z}_\ell $-sheaf on $X$, or simply an $\ell $-adic sheaf $\mathcal{F}$ is an inverse system $\left\{ \mathcal{F}_ n\right\} _{n\geq 1}$ where

  1. $\mathcal{F}_ n$ is a constructible $\mathbf{Z}/\ell ^ n\mathbf{Z}$-module on $X_{\acute{e}tale}$, and

  2. the transition maps $\mathcal{F}_{n+1}\to \mathcal{F}_ n$ induce isomorphisms $\mathcal{F}_{n+1} \otimes _{\mathbf{Z}/\ell ^{n+1}\mathbf{Z}} \mathbf{Z}/\ell ^ n\mathbf{Z} \cong \mathcal{F}_ n$.

We say that $\mathcal{F}$ is lisse if each $\mathcal{F}_ n$ is locally constant. A morphism of such is merely a morphism of inverse systems.


Comments (0)

There are also:

  • 2 comment(s) on Section 63.18: On l-adic sheaves

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03UM. Beware of the difference between the letter 'O' and the digit '0'.