Definition 64.18.1. Let X be a Noetherian scheme. A \mathbf{Z}_\ell -sheaf on X, or simply an \ell -adic sheaf \mathcal{F} is an inverse system \left\{ \mathcal{F}_ n\right\} _{n\geq 1} where
\mathcal{F}_ n is a constructible \mathbf{Z}/\ell ^ n\mathbf{Z}-module on X_{\acute{e}tale}, and
the transition maps \mathcal{F}_{n+1}\to \mathcal{F}_ n induce isomorphisms \mathcal{F}_{n+1} \otimes _{\mathbf{Z}/\ell ^{n+1}\mathbf{Z}} \mathbf{Z}/\ell ^ n\mathbf{Z} \cong \mathcal{F}_ n.
We say that \mathcal{F} is lisse if each \mathcal{F}_ n is locally constant. A morphism of such is merely a morphism of inverse systems.
Comments (0)
There are also: