The Stacks project

64.18 On l-adic sheaves

Definition 64.18.1. Let $X$ be a Noetherian scheme. A $\mathbf{Z}_\ell $-sheaf on $X$, or simply an $\ell $-adic sheaf $\mathcal{F}$ is an inverse system $\left\{ \mathcal{F}_ n\right\} _{n\geq 1}$ where

  1. $\mathcal{F}_ n$ is a constructible $\mathbf{Z}/\ell ^ n\mathbf{Z}$-module on $X_{\acute{e}tale}$, and

  2. the transition maps $\mathcal{F}_{n+1}\to \mathcal{F}_ n$ induce isomorphisms $\mathcal{F}_{n+1} \otimes _{\mathbf{Z}/\ell ^{n+1}\mathbf{Z}} \mathbf{Z}/\ell ^ n\mathbf{Z} \cong \mathcal{F}_ n$.

We say that $\mathcal{F}$ is lisse if each $\mathcal{F}_ n$ is locally constant. A morphism of such is merely a morphism of inverse systems.

Lemma 64.18.2. Let $\{ \mathcal{G}_ n\} _{n\geq 1}$ be an inverse system of constructible $\mathbf{Z}/\ell ^ n\mathbf{Z}$-modules. Suppose that for all $k\geq 1$, the maps

\[ \mathcal{G}_{n+1}/\ell ^ k \mathcal{G}_{n+1}\to \mathcal{G}_ n /\ell ^ k \mathcal{G}_ n \]

are isomorphisms for all $n\gg 0$ (where the bound possibly depends on $k$). In other words, assume that the system $\{ \mathcal{G}_ n/\ell ^ k\mathcal{G}_ n\} _{n\geq 1}$ is eventually constant, and call $\mathcal{F}_ k$ the corresponding sheaf. Then the system $\left\{ \mathcal{F}_ k\right\} _{k\geq 1}$ forms a $\mathbf{Z}_\ell $-sheaf on $X$.

Proof. The proof is obvious. $\square$

Lemma 64.18.3. The category of $\mathbf{Z}_\ell $-sheaves on $X$ is abelian.

Proof. Let $\Phi = \left\{ \varphi _ n\right\} _{n\geq 1} : \left\{ \mathcal{F}_ n\right\} \to \left\{ \mathcal{G}_ n\right\} $ be a morphism of $\mathbf{Z}_\ell $-sheaves. Set

\[ \mathop{\mathrm{Coker}}(\Phi ) = \left\{ \mathop{\mathrm{Coker}}\left(\mathcal{F}_ n \xrightarrow {\varphi _ n} \mathcal{G}_ n\right) \right\} _{n\geq 1} \]

and $\mathop{\mathrm{Ker}}(\Phi )$ is the result of Lemma 64.18.2 applied to the inverse system

\[ \left\{ \bigcap _{m\geq n} \mathop{\mathrm{Im}}\left(\mathop{\mathrm{Ker}}(\varphi _ m) \to \mathop{\mathrm{Ker}}(\varphi _ n)\right) \right\} _{n \geq 1}. \]

That this defines an abelian category is left to the reader. $\square$

Example 64.18.4. Let $X=\mathop{\mathrm{Spec}}(\mathbf{C})$ and $\Phi : \mathbf{Z}_\ell \to \mathbf{Z}_\ell $ be multiplication by $\ell $. More precisely,

\[ \Phi = \left\{ \mathbf{Z}/\ell ^ n\mathbf{Z} \xrightarrow {\ell } \mathbf{Z}/\ell ^ n\mathbf{Z}\right\} _{n \geq 1}. \]

To compute the kernel, we consider the inverse system

\[ \ldots \to \mathbf{Z}/\ell \mathbf{Z}\xrightarrow {0} \mathbf{Z}/\ell \mathbf{Z}\xrightarrow {0}\mathbf{Z}/\ell \mathbf{Z}. \]

Since the images are always zero, $\mathop{\mathrm{Ker}}(\Phi )$ is zero as a system.

Remark 64.18.5. If $\mathcal{F} = \left\{ \mathcal{F}_ n\right\} _{n\geq 1}$ is a $\mathbf{Z}_\ell $-sheaf on $X$ and $\bar x$ is a geometric point then $M_ n = \left\{ \mathcal{F}_{n, \bar x}\right\} $ is an inverse system of finite $\mathbf{Z}/\ell ^ n\mathbf{Z}$-modules such that $M_{n+1}\to M_ n$ is surjective and $M_ n = M_{n+1}/\ell ^ n M_{n+1}$. It follows that

\[ M = \mathop{\mathrm{lim}}\nolimits _ n M_ n = \mathop{\mathrm{lim}}\nolimits \mathcal{F}_{n, \bar x} \]

is a finite $\mathbf{Z}_\ell $-module. This follows from Algebra, Lemmas 10.98.2 and 10.96.12 and the fact that $M/\ell M = M_1$ is finite over $\mathbf{F}_\ell $. Therefore, $M\cong \mathbf{Z}_\ell ^{\oplus r} \oplus \oplus _{i = 1}^ t \mathbf{Z}_\ell /\ell ^{e_ i}\mathbf{Z}_\ell $ for some $r, t\geq 0$, $e_ i\geq 1$. The module $M = \mathcal{F}_{\bar x}$ is called the stalk of $\mathcal{F}$ at $\bar x$.

Definition 64.18.6. A $\mathbf{Z}_\ell $-sheaf $\mathcal{F}$ is torsion if $\ell ^ n : \mathcal{F} \to \mathcal{F}$ is the zero map for some $n$. The abelian category of $\mathbf{Q}_\ell $-sheaves on $X$ is the quotient of the abelian category of $\mathbf{Z}_\ell $-sheaves by the Serre subcategory of torsion sheaves. In other words, its objects are $\mathbf{Z}_\ell $-sheaves on $X$, and if $\mathcal{F}, \mathcal{G}$ are two such, then

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathbf{Q}_\ell } \left(\mathcal{F}, \mathcal{G} \right) = \mathop{\mathrm{Hom}}\nolimits _{\mathbf{Z}_\ell } \left(\mathcal{F}, \mathcal{G}\right) \otimes _{\mathbf{Z}_\ell } \mathbf{Q}_\ell . \]

We denote by $\mathcal{F} \mapsto \mathcal{F} \otimes \mathbf{Q}_\ell $ the quotient functor (right adjoint to the inclusion). If $\mathcal{F} = \mathcal{F}' \otimes \mathbf{Q}_\ell $ where $\mathcal{F}'$ is a $\mathbf{Z}_\ell $-sheaf and $\bar x$ is a geometric point, then the stalk of $\mathcal{F}$ at $\bar x$ is $\mathcal{F}_{\bar x} = \mathcal{F}'_{\bar x} \otimes \mathbf{Q}_\ell $.

Remark 64.18.7. Since a $\mathbf{Z}_\ell $-sheaf is only defined on a Noetherian scheme, it is torsion if and only if its stalks are torsion.

Definition 64.18.8. If $X$ is a separated scheme of finite type over an algebraically closed field $k$ and $\mathcal{F} = \left\{ \mathcal{F}_ n\right\} _{n\geq 1}$ is a $\mathbf{Z}_\ell $-sheaf on $X$, then we define

\[ H^ i(X, \mathcal{F}) := \mathop{\mathrm{lim}}\nolimits _ n H^ i(X, \mathcal{F}_ n) \quad \text{and}\quad H_ c^ i(X, \mathcal{F}) := \mathop{\mathrm{lim}}\nolimits _ n H_ c^ i(X, \mathcal{F}_ n). \]

If $\mathcal{F} = \mathcal{F}'\otimes \mathbf{Q}_\ell $ for a $\mathbf{Z}_\ell $-sheaf $\mathcal{F}'$ then we set

\[ H_ c^ i(X , \mathcal{F}) := H_ c^ i(X, \mathcal{F}')\otimes _{\mathbf{Z}_\ell }\mathbf{Q}_\ell . \]

We call these the $\ell $-adic cohomology of $X$ with coefficients $\mathcal{F}$.

Comments (2)

Comment #2440 by sdf on

I guess the brace { in definition 50.95.1 should be {\it. Also you refer to when you define lisse in definition 50.95.1, but you haven't said what is, I guess you meant to write instead of just in the first sentence.

Comment #2483 by on

OK, I sort of fixed this, but the whole section needs a rewrite. See fix here. Thanks!

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03UL. Beware of the difference between the letter 'O' and the digit '0'.