Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 64.18.3. The category of $\mathbf{Z}_\ell $-sheaves on $X$ is abelian.

Proof. Let $\Phi = \left\{ \varphi _ n\right\} _{n\geq 1} : \left\{ \mathcal{F}_ n\right\} \to \left\{ \mathcal{G}_ n\right\} $ be a morphism of $\mathbf{Z}_\ell $-sheaves. Set

\[ \mathop{\mathrm{Coker}}(\Phi ) = \left\{ \mathop{\mathrm{Coker}}\left(\mathcal{F}_ n \xrightarrow {\varphi _ n} \mathcal{G}_ n\right) \right\} _{n\geq 1} \]

and $\mathop{\mathrm{Ker}}(\Phi )$ is the result of Lemma 64.18.2 applied to the inverse system

\[ \left\{ \bigcap _{m\geq n} \mathop{\mathrm{Im}}\left(\mathop{\mathrm{Ker}}(\varphi _ m) \to \mathop{\mathrm{Ker}}(\varphi _ n)\right) \right\} _{n \geq 1}. \]

That this defines an abelian category is left to the reader. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 64.18: On l-adic sheaves

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.