Example 64.18.4. Let X=\mathop{\mathrm{Spec}}(\mathbf{C}) and \Phi : \mathbf{Z}_\ell \to \mathbf{Z}_\ell be multiplication by \ell . More precisely,
\Phi = \left\{ \mathbf{Z}/\ell ^ n\mathbf{Z} \xrightarrow {\ell } \mathbf{Z}/\ell ^ n\mathbf{Z}\right\} _{n \geq 1}.
To compute the kernel, we consider the inverse system
\ldots \to \mathbf{Z}/\ell \mathbf{Z}\xrightarrow {0} \mathbf{Z}/\ell \mathbf{Z}\xrightarrow {0}\mathbf{Z}/\ell \mathbf{Z}.
Since the images are always zero, \mathop{\mathrm{Ker}}(\Phi ) is zero as a system.
Comments (0)
There are also: