The Stacks project

Lemma 63.23.1. Let $X$ be a smooth, projective, geometrically irreducible curve over a finite field $k$. Then

  1. the $L$-function $L(X, \mathbf{Q}_\ell )$ is a rational function,

  2. the eigenvalues $\alpha _1, \ldots , \alpha _{2g}$ of $\pi _ X^*$ on $H^1(X_{\bar k}, \mathbf{Q}_\ell )$ are algebraic integers independent of $\ell $,

  3. the number of rational points of $X$ on $k_ n$, where $[k_ n : k] = n$, is

    \[ \# X(k_ n) = 1 - \sum \nolimits _{i = 1}^{2g}\alpha _ i^ n + q^ n, \]
  4. for each $i$, $|\alpha _ i| < q$.

Proof. Part (3) is Theorem 63.20.5 applied to $\mathcal{F} = \underline{\mathbf{Q}_\ell }$ on $X \otimes k_ n$. For part (4), use the following result. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03V8. Beware of the difference between the letter 'O' and the digit '0'.